JavaAlgorithms/divideconquer/SkylineAlgorithm.java

186 lines
6.0 KiB
Java
Raw Normal View History

import java.util.ArrayList;
import java.util.Comparator;
/**
* @author dimgrichr
2019-01-15 19:54:43 +08:00
* <p>
* Space complexity: O(n)
* Time complexity: O(nlogn), because it is a divide and conquer algorithm
*/
public class SkylineAlgorithm {
private ArrayList<Point> points;
2019-01-15 19:54:43 +08:00
/**
* Main constructor of the application.
* ArrayList points gets created, which represents the sum of all edges.
*/
2019-01-15 19:54:43 +08:00
public SkylineAlgorithm() {
points = new ArrayList<>();
}
2019-01-15 19:54:43 +08:00
/**
* @return points, the ArrayList that includes all points.
*/
2019-01-15 19:54:43 +08:00
public ArrayList<Point> getPoints() {
return points;
}
2019-01-15 19:54:43 +08:00
/**
* The main divide and conquer, and also recursive algorithm.
* It gets an ArrayList full of points as an argument.
* If the size of that ArrayList is 1 or 2,
* the ArrayList is returned as it is, or with one less point
* (if the initial size is 2 and one of it's points, is dominated by the other one).
* On the other hand, if the ArrayList's size is bigger than 2,
2019-01-15 19:54:43 +08:00
* the function is called again, twice,
* with arguments the corresponding half of the initial ArrayList each time.
* Once the flashback has ended, the function produceFinalSkyLine gets called,
* in order to produce the final skyline, and return it.
2019-01-15 19:54:43 +08:00
*
* @param list, the initial list of points
* @return leftSkyLine, the combination of first half's and second half's skyline
* @see Point
* @see produceFinalSkyLine
*/
2019-01-15 19:54:43 +08:00
public ArrayList<Point> produceSubSkyLines(ArrayList<Point> list) {
// part where function exits flashback
int size = list.size();
2019-01-15 19:54:43 +08:00
if (size == 1) {
return list;
2019-01-15 19:54:43 +08:00
} else if (size == 2) {
if (list.get(0).dominates(list.get(1))) {
list.remove(1);
2019-01-15 19:54:43 +08:00
} else {
if (list.get(1).dominates(list.get(0))) {
list.remove(0);
}
}
return list;
}
2019-01-15 19:54:43 +08:00
// recursive part of the function
ArrayList<Point> leftHalf = new ArrayList<>();
ArrayList<Point> rightHalf = new ArrayList<>();
for (int i = 0; i < list.size(); i++) {
if (i < list.size() / 2) {
leftHalf.add(list.get(i));
2019-01-15 19:54:43 +08:00
} else {
rightHalf.add(list.get(i));
}
}
2019-01-15 19:54:43 +08:00
ArrayList<Point> leftSubSkyLine = produceSubSkyLines(leftHalf);
ArrayList<Point> rightSubSkyLine= produceSubSkyLines(rightHalf);
// skyline is produced
return produceFinalSkyLine(leftSubSkyLine, rightSubSkyLine);
}
2019-01-15 19:54:43 +08:00
/**
* The first half's skyline gets cleared
* from some points that are not part of the final skyline
* (Points with same x-value and different y=values. The point with the smallest y-value is kept).
* Then, the minimum y-value of the points of first half's skyline is found.
* That helps us to clear the second half's skyline, because, the points
* of second half's skyline that have greater y-value of the minimum y-value that we found before,
* are dominated, so they are not part of the final skyline.
* Finally, the "cleaned" first half's and second half's skylines, are combined,
* producing the final skyline, which is returned.
2019-01-15 19:54:43 +08:00
*
* @param left the skyline of the left part of points
* @param right the skyline of the right part of points
* @return left the final skyline
*/
2019-01-15 19:54:43 +08:00
public ArrayList<Point> produceFinalSkyLine(ArrayList<Point> left, ArrayList<Point> right) {
// dominated points of ArrayList left are removed
for (int i = 0; i < left.size() - 1; i++) {
if (left.get(i).x == left.get(i + 1).x && left.get(i).y > left.get(i + 1).y) {
left.remove(i);
i--;
}
}
2019-01-15 19:54:43 +08:00
// minimum y-value is found
int min = left.get(0).y;
for (int i = 1; i < left.size(); i++) {
if (min > left.get(i).y) {
min = left.get(i).y;
2019-01-15 19:54:43 +08:00
if (min == 1) {
i = left.size();
}
}
}
2019-01-15 19:54:43 +08:00
// dominated points of ArrayList right are removed
for (int i = 0; i < right.size(); i++) {
if (right.get(i).y >= min) {
right.remove(i);
i--;
}
}
2019-01-15 19:54:43 +08:00
// final skyline found and returned
left.addAll(right);
return left;
}
2019-01-15 19:54:43 +08:00
public static class Point {
private int x;
private int y;
2019-01-15 19:54:43 +08:00
/**
* The main constructor of Point Class, used to represent the 2 Dimension points.
2019-01-15 19:54:43 +08:00
*
* @param x the point's x-value.
* @param y the point's y-value.
*/
2019-01-15 19:54:43 +08:00
public Point(int x, int y) {
this.x = x;
this.y = y;
}
2019-01-15 19:54:43 +08:00
/**
* @return x, the x-value
*/
2019-01-15 19:54:43 +08:00
public int getX() {
return x;
}
2019-01-15 19:54:43 +08:00
/**
* @return y, the y-value
*/
2019-01-15 19:54:43 +08:00
public int getY() {
return y;
}
2019-01-15 19:54:43 +08:00
/**
* Based on the skyline theory,
* it checks if the point that calls the function dominates the argument point.
2019-01-15 19:54:43 +08:00
*
* @param p1 the point that is compared
* @return true if the point wich calls the function dominates p1
2019-01-15 19:54:43 +08:00
* false otherwise.
*/
2019-01-15 19:54:43 +08:00
public boolean dominates(Point p1) {
// checks if p1 is dominated
return (this.x < p1.x && this.y <= p1.y) || (this.x <= p1.x && this.y < p1.y);
}
}
2019-01-15 19:54:43 +08:00
/**
* It is used to compare the 2 Dimension points,
* based on their x-values, in order get sorted later.
*/
class XComparator implements Comparator<Point> {
2019-01-15 19:54:43 +08:00
@Override
public int compare(Point a, Point b) {
return Integer.compare(a.x, b.x);
}
}
}