2019-02-23 21:12:08 +08:00
|
|
|
/**
|
|
|
|
* A Dynamic Programming solution for Rod cutting problem
|
|
|
|
* Returns the best obtainable price for a rod of
|
|
|
|
* length n and price[] as prices of different pieces
|
|
|
|
*
|
|
|
|
*/
|
2017-10-27 07:56:18 +08:00
|
|
|
public class RodCutting {
|
2017-10-03 12:46:32 +08:00
|
|
|
|
2019-02-23 21:12:08 +08:00
|
|
|
private static int cutRod(int[] price, int n) {
|
|
|
|
int val[] = new int[n + 1];
|
|
|
|
val[0] = 0;
|
|
|
|
|
|
|
|
for (int i = 1; i <= n; i++) {
|
|
|
|
int max_val = Integer.MIN_VALUE;
|
|
|
|
for (int j = 0; j < i; j++)
|
|
|
|
max_val = Math.max(max_val, price[j] + val[i - j - 1]);
|
|
|
|
|
|
|
|
val[i] = max_val;
|
|
|
|
}
|
2017-10-03 12:46:32 +08:00
|
|
|
|
2019-02-23 21:12:08 +08:00
|
|
|
return val[n];
|
|
|
|
}
|
2017-10-03 12:46:32 +08:00
|
|
|
|
2019-02-23 21:12:08 +08:00
|
|
|
// main function to test
|
|
|
|
public static void main(String args[]) {
|
|
|
|
int[] arr = new int[]{2, 5, 13, 19, 20};
|
|
|
|
int size = arr.length;
|
|
|
|
System.out.println("Maximum Obtainable Value is " +
|
|
|
|
cutRod(arr, size));
|
|
|
|
}
|
2017-10-03 12:46:32 +08:00
|
|
|
}
|