75 lines
2.7 KiB
Java
75 lines
2.7 KiB
Java
|
package MatrixExponentiation;
|
||
|
|
||
|
import java.util.Scanner;
|
||
|
|
||
|
/** @author Anirudh Buvanesh (https://github.com/anirudhb11)
|
||
|
* For more information see https://www.geeksforgeeks.org/matrix-exponentiation/
|
||
|
* */
|
||
|
public class Fibonacci {
|
||
|
// Exponentiation matrix for Fibonacci sequence
|
||
|
private static final int [][] fibMatrix = {{1,1}, {1,0}};
|
||
|
private static final int [][] identityMatrix = {{1,0}, {0,1}};
|
||
|
//First 2 fibonacci numbers
|
||
|
private static final int [][] baseFibNumbers = {{1}, {0}};
|
||
|
|
||
|
/**
|
||
|
* Performs multiplication of 2 matrices
|
||
|
* @param matrix1
|
||
|
* @param matrix2
|
||
|
* @return The product of matrix1 and matrix2
|
||
|
*/
|
||
|
|
||
|
private static int[][] matrixMultiplication(int[][] matrix1, int[][] matrix2){
|
||
|
//Check if matrices passed can be multiplied
|
||
|
int rowsInMatrix1 = matrix1.length;
|
||
|
int columnsInMatrix1 = matrix1[0].length;
|
||
|
|
||
|
int rowsInMatrix2 = matrix2.length;
|
||
|
int columnsInMatrix2 = matrix2[0].length;
|
||
|
|
||
|
assert columnsInMatrix1 == rowsInMatrix2;
|
||
|
int [][] product = new int[rowsInMatrix1][columnsInMatrix2];
|
||
|
for (int rowIndex = 0; rowIndex < rowsInMatrix1; rowIndex ++){
|
||
|
for(int colIndex = 0; colIndex < columnsInMatrix2; colIndex++){
|
||
|
int matrixEntry = 0;
|
||
|
for(int intermediateIndex = 0; intermediateIndex < columnsInMatrix1; intermediateIndex++){
|
||
|
matrixEntry += matrix1[rowIndex][intermediateIndex] * matrix2[intermediateIndex][colIndex];
|
||
|
}
|
||
|
product[rowIndex][colIndex] = matrixEntry;
|
||
|
}
|
||
|
}
|
||
|
return product;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Calculates the fibonacci number using matrix exponentiaition technique
|
||
|
* @param n The input n for which we have to determine the fibonacci number Outputs the nth
|
||
|
* * fibonacci number
|
||
|
* @return a 2 X 1 array as { {F_n+1}, {F_n} }
|
||
|
*/
|
||
|
public static int[][] fib(int n){
|
||
|
if(n == 0){
|
||
|
return Fibonacci.identityMatrix;
|
||
|
}
|
||
|
else{
|
||
|
int [][] cachedResult = fib(n/2);
|
||
|
int [][] matrixExpResult = matrixMultiplication(cachedResult, cachedResult);
|
||
|
if(n%2 == 0){
|
||
|
return matrixExpResult;
|
||
|
}
|
||
|
else{
|
||
|
return matrixMultiplication(Fibonacci.fibMatrix, matrixExpResult);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
public static void main(String[] args) {
|
||
|
// Returns [0, 1, 1, 2, 3, 5 ..] for n = [0, 1, 2, 3, 4, 5.. ]
|
||
|
Scanner sc = new Scanner(System.in);
|
||
|
int n = sc.nextInt();
|
||
|
int [][] result = matrixMultiplication(fib(n), baseFibNumbers);
|
||
|
System.out.println("Fib(" + n + ") = "+ result[1][0] );
|
||
|
sc.close();
|
||
|
}
|
||
|
}
|