2019-05-09 19:32:54 +08:00
|
|
|
package DynamicProgramming;
|
|
|
|
|
|
|
|
/**
|
|
|
|
* A DynamicProgramming based solution for 0-1 Knapsack problem
|
|
|
|
*/
|
|
|
|
|
|
|
|
public class Knapsack {
|
|
|
|
|
2019-09-26 05:21:54 +08:00
|
|
|
private static int knapSack(int W, int wt[], int val[], int n) throws IllegalArgumentException {
|
|
|
|
if(wt == null || val == null)
|
|
|
|
throw new IllegalArgumentException();
|
2019-05-09 19:32:54 +08:00
|
|
|
int i, w;
|
|
|
|
int rv[][] = new int[n + 1][W + 1]; //rv means return value
|
|
|
|
|
|
|
|
// Build table rv[][] in bottom up manner
|
|
|
|
for (i = 0; i <= n; i++) {
|
|
|
|
for (w = 0; w <= W; w++) {
|
|
|
|
if (i == 0 || w == 0)
|
|
|
|
rv[i][w] = 0;
|
|
|
|
else if (wt[i - 1] <= w)
|
|
|
|
rv[i][w] = Math.max(val[i - 1] + rv[i - 1][w - wt[i - 1]], rv[i - 1][w]);
|
|
|
|
else
|
|
|
|
rv[i][w] = rv[i - 1][w];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return rv[n][W];
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Driver program to test above function
|
|
|
|
public static void main(String args[]) {
|
|
|
|
int val[] = new int[]{50, 100, 130};
|
|
|
|
int wt[] = new int[]{10, 20, 40};
|
|
|
|
int W = 50;
|
|
|
|
int n = val.length;
|
|
|
|
System.out.println(knapSack(W, wt, val, n));
|
|
|
|
}
|
|
|
|
}
|