JavaAlgorithms/Maths/FFT.java

282 lines
7.8 KiB
Java
Raw Normal View History

package com.maths;
import java.util.ArrayList;
import java.util.Collections;
/**
* Class for calculating the Fast Fourier Transform (FFT) of a discrete signal using the Cooley-Tukey algorithm.
*
* @author Ioannis Karavitsis
* @version 1.0
* */
public class FFT
{
/**
* This class represents a complex number and has methods for basic operations.
*
* More info:
* https://introcs.cs.princeton.edu/java/32class/Complex.java.html
* */
static class Complex
{
private double real, img;
/**
* Default Constructor.
* Creates the complex number 0.
* */
public Complex()
{
real = 0;
img = 0;
}
/**
* Constructor. Creates a complex number.
*
* @param r The real part of the number.
* @param i The imaginary part of the number.
* */
public Complex(double r, double i)
{
real = r;
img = i;
}
/**
* Returns the real part of the complex number.
*
* @return The real part of the complex number.
* */
public double getReal()
{
return real;
}
/**
* Returns the imaginary part of the complex number.
*
* @return The imaginary part of the complex number.
* */
public double getImaginary()
{
return img;
}
/**
* Adds this complex number to another.
*
* @param z The number to be added.
* @return The sum.
* */
public Complex add(Complex z)
{
Complex temp = new Complex();
temp.real = this.real + z.real;
temp.img = this.img + z.img;
return temp;
}
/**
* Subtracts a number from this complex number.
*
* @param z The number to be subtracted.
* @return The difference.
* */
public Complex subtract(Complex z)
{
Complex temp = new Complex();
temp.real = this.real - z.real;
temp.img = this.img - z.img;
return temp;
}
/**
* Multiplies this complex number by another.
*
* @param z The number to be multiplied.
* @return The product.
* */
public Complex multiply(Complex z)
{
Complex temp = new Complex();
temp.real = this.real*z.real - this.img*z.img;
temp.img = this.real*z.img + this.img*z.real;
return temp;
}
/**
* Multiplies this complex number by a scalar.
*
* @param n The real number to be multiplied.
* @return The product.
* */
public Complex multiply(double n)
{
Complex temp = new Complex();
temp.real = this.real * n;
temp.img = this.img * n;
return temp;
}
/**
* Finds the conjugate of this complex number.
*
* @return The conjugate.
* */
public Complex conjugate()
{
Complex temp = new Complex();
temp.real = this.real;
temp.img = -this.img;
return temp;
}
/**
* Finds the magnitude of the complex number.
*
* @return The magnitude.
* */
public double abs()
{
return Math.hypot(this.real, this.img);
}
/**
* Divides this complex number by another.
*
* @param z The divisor.
* @return The quotient.
* */
public Complex divide(Complex z)
{
Complex temp = new Complex();
temp.real = (this.real*z.real + this.img*z.img) / (z.abs()*z.abs());
temp.img = (this.img*z.real - this.real*z.img) / (z.abs()*z.abs());
return temp;
}
/**
* Divides this complex number by a scalar.
*
* @param n The divisor which is a real number.
* @return The quotient.
* */
public Complex divide(double n)
{
Complex temp = new Complex();
temp.real = this.real / n;
temp.img = this.img / n;
return temp;
}
}
/**
* Iterative In-Place Radix-2 Cooley-Tukey Fast Fourier Transform Algorithm with Bit-Reversal.
* The size of the input signal must be a power of 2. If it isn't then it is padded with zeros and the output FFT will be bigger than the input signal.
*
* More info:
* https://www.algorithm-archive.org/contents/cooley_tukey/cooley_tukey.html
* https://www.geeksforgeeks.org/iterative-fast-fourier-transformation-polynomial-multiplication/
* https://en.wikipedia.org/wiki/Cooley%E2%80%93Tukey_FFT_algorithm
* https://cp-algorithms.com/algebra/fft.html
*
* @param x The discrete signal which is then converted to the FFT or the IFFT of signal x.
* @param inverse True if you want to find the inverse FFT.
* */
public static void fft(ArrayList<Complex> x, boolean inverse)
{
/* Pad the signal with zeros if necessary */
paddingPowerOfTwo(x);
int N = x.size();
/* Find the log2(N) */
int log2N = 0;
while((1 << log2N) < N)
log2N++;
/* Swap the values of the signal with bit-reversal method */
int reverse;
for(int i = 0; i < N; i++)
{
reverse = reverseBits(i, log2N);
if(i < reverse)
Collections.swap(x, i, reverse);
}
int direction = inverse ? -1 : 1;
/* Main loop of the algorithm */
for(int len = 2; len <= N; len *= 2)
{
double angle = -2 * Math.PI / len * direction;
Complex wlen = new Complex(Math.cos(angle), Math.sin(angle));
for(int i = 0; i < N; i += len)
{
Complex w = new Complex(1, 0);
for(int j = 0; j < len / 2; j++)
{
Complex u = x.get(i + j);
Complex v = w.multiply(x.get(i + j + len/2));
x.set(i + j, u.add(v));
x.set(i + j + len/2, u.subtract(v));
w = w.multiply(wlen);
}
}
}
/* Divide by N if we want the inverse FFT */
if(inverse)
{
for (int i = 0; i < x.size(); i++)
{
Complex z = x.get(i);
x.set(i, z.divide(N));
}
}
}
/**
* This function reverses the bits of a number.
* It is used in Cooley-Tukey FFT algorithm.
*
* E.g.
* num = 13 = 00001101 in binary
* log2N = 8
* Then reversed = 176 = 10110000 in binary
*
* More info:
* https://cp-algorithms.com/algebra/fft.html
* https://www.geeksforgeeks.org/write-an-efficient-c-program-to-reverse-bits-of-a-number/
*
* @param num The integer you want to reverse its bits.
* @param log2N The number of bits you want to reverse.
* @return The reversed number
* */
private static int reverseBits(int num, int log2N)
{
int reversed = 0;
for(int i = 0; i < log2N; i++)
{
if((num & (1 << i)) != 0)
reversed |= 1 << (log2N - 1 - i);
}
return reversed;
}
/**
* This method pads an ArrayList with zeros in order to have a size equal to the next power of two of the previous size.
*
* @param x The ArrayList to be padded.
* */
private static void paddingPowerOfTwo(ArrayList<Complex> x)
{
int n = 1;
int oldSize = x.size();
while(n < oldSize)
n *= 2;
for(int i = 0; i < n - oldSize; i++)
x.add(new Complex());
}
}