282 lines
7.8 KiB
Java
282 lines
7.8 KiB
Java
|
package com.maths;
|
||
|
|
||
|
import java.util.ArrayList;
|
||
|
import java.util.Collections;
|
||
|
|
||
|
/**
|
||
|
* Class for calculating the Fast Fourier Transform (FFT) of a discrete signal using the Cooley-Tukey algorithm.
|
||
|
*
|
||
|
* @author Ioannis Karavitsis
|
||
|
* @version 1.0
|
||
|
* */
|
||
|
public class FFT
|
||
|
{
|
||
|
/**
|
||
|
* This class represents a complex number and has methods for basic operations.
|
||
|
*
|
||
|
* More info:
|
||
|
* https://introcs.cs.princeton.edu/java/32class/Complex.java.html
|
||
|
* */
|
||
|
static class Complex
|
||
|
{
|
||
|
private double real, img;
|
||
|
|
||
|
/**
|
||
|
* Default Constructor.
|
||
|
* Creates the complex number 0.
|
||
|
* */
|
||
|
public Complex()
|
||
|
{
|
||
|
real = 0;
|
||
|
img = 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Constructor. Creates a complex number.
|
||
|
*
|
||
|
* @param r The real part of the number.
|
||
|
* @param i The imaginary part of the number.
|
||
|
* */
|
||
|
public Complex(double r, double i)
|
||
|
{
|
||
|
real = r;
|
||
|
img = i;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns the real part of the complex number.
|
||
|
*
|
||
|
* @return The real part of the complex number.
|
||
|
* */
|
||
|
public double getReal()
|
||
|
{
|
||
|
return real;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Returns the imaginary part of the complex number.
|
||
|
*
|
||
|
* @return The imaginary part of the complex number.
|
||
|
* */
|
||
|
public double getImaginary()
|
||
|
{
|
||
|
return img;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Adds this complex number to another.
|
||
|
*
|
||
|
* @param z The number to be added.
|
||
|
* @return The sum.
|
||
|
* */
|
||
|
public Complex add(Complex z)
|
||
|
{
|
||
|
Complex temp = new Complex();
|
||
|
temp.real = this.real + z.real;
|
||
|
temp.img = this.img + z.img;
|
||
|
return temp;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Subtracts a number from this complex number.
|
||
|
*
|
||
|
* @param z The number to be subtracted.
|
||
|
* @return The difference.
|
||
|
* */
|
||
|
public Complex subtract(Complex z)
|
||
|
{
|
||
|
Complex temp = new Complex();
|
||
|
temp.real = this.real - z.real;
|
||
|
temp.img = this.img - z.img;
|
||
|
return temp;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Multiplies this complex number by another.
|
||
|
*
|
||
|
* @param z The number to be multiplied.
|
||
|
* @return The product.
|
||
|
* */
|
||
|
public Complex multiply(Complex z)
|
||
|
{
|
||
|
Complex temp = new Complex();
|
||
|
temp.real = this.real*z.real - this.img*z.img;
|
||
|
temp.img = this.real*z.img + this.img*z.real;
|
||
|
return temp;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Multiplies this complex number by a scalar.
|
||
|
*
|
||
|
* @param n The real number to be multiplied.
|
||
|
* @return The product.
|
||
|
* */
|
||
|
public Complex multiply(double n)
|
||
|
{
|
||
|
Complex temp = new Complex();
|
||
|
temp.real = this.real * n;
|
||
|
temp.img = this.img * n;
|
||
|
return temp;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Finds the conjugate of this complex number.
|
||
|
*
|
||
|
* @return The conjugate.
|
||
|
* */
|
||
|
public Complex conjugate()
|
||
|
{
|
||
|
Complex temp = new Complex();
|
||
|
temp.real = this.real;
|
||
|
temp.img = -this.img;
|
||
|
return temp;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Finds the magnitude of the complex number.
|
||
|
*
|
||
|
* @return The magnitude.
|
||
|
* */
|
||
|
public double abs()
|
||
|
{
|
||
|
return Math.hypot(this.real, this.img);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Divides this complex number by another.
|
||
|
*
|
||
|
* @param z The divisor.
|
||
|
* @return The quotient.
|
||
|
* */
|
||
|
public Complex divide(Complex z)
|
||
|
{
|
||
|
Complex temp = new Complex();
|
||
|
temp.real = (this.real*z.real + this.img*z.img) / (z.abs()*z.abs());
|
||
|
temp.img = (this.img*z.real - this.real*z.img) / (z.abs()*z.abs());
|
||
|
return temp;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Divides this complex number by a scalar.
|
||
|
*
|
||
|
* @param n The divisor which is a real number.
|
||
|
* @return The quotient.
|
||
|
* */
|
||
|
public Complex divide(double n)
|
||
|
{
|
||
|
Complex temp = new Complex();
|
||
|
temp.real = this.real / n;
|
||
|
temp.img = this.img / n;
|
||
|
return temp;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Iterative In-Place Radix-2 Cooley-Tukey Fast Fourier Transform Algorithm with Bit-Reversal.
|
||
|
* The size of the input signal must be a power of 2. If it isn't then it is padded with zeros and the output FFT will be bigger than the input signal.
|
||
|
*
|
||
|
* More info:
|
||
|
* https://www.algorithm-archive.org/contents/cooley_tukey/cooley_tukey.html
|
||
|
* https://www.geeksforgeeks.org/iterative-fast-fourier-transformation-polynomial-multiplication/
|
||
|
* https://en.wikipedia.org/wiki/Cooley%E2%80%93Tukey_FFT_algorithm
|
||
|
* https://cp-algorithms.com/algebra/fft.html
|
||
|
*
|
||
|
* @param x The discrete signal which is then converted to the FFT or the IFFT of signal x.
|
||
|
* @param inverse True if you want to find the inverse FFT.
|
||
|
* */
|
||
|
public static void fft(ArrayList<Complex> x, boolean inverse)
|
||
|
{
|
||
|
/* Pad the signal with zeros if necessary */
|
||
|
paddingPowerOfTwo(x);
|
||
|
int N = x.size();
|
||
|
|
||
|
/* Find the log2(N) */
|
||
|
int log2N = 0;
|
||
|
while((1 << log2N) < N)
|
||
|
log2N++;
|
||
|
|
||
|
/* Swap the values of the signal with bit-reversal method */
|
||
|
int reverse;
|
||
|
for(int i = 0; i < N; i++)
|
||
|
{
|
||
|
reverse = reverseBits(i, log2N);
|
||
|
if(i < reverse)
|
||
|
Collections.swap(x, i, reverse);
|
||
|
}
|
||
|
|
||
|
int direction = inverse ? -1 : 1;
|
||
|
|
||
|
/* Main loop of the algorithm */
|
||
|
for(int len = 2; len <= N; len *= 2)
|
||
|
{
|
||
|
double angle = -2 * Math.PI / len * direction;
|
||
|
Complex wlen = new Complex(Math.cos(angle), Math.sin(angle));
|
||
|
for(int i = 0; i < N; i += len)
|
||
|
{
|
||
|
Complex w = new Complex(1, 0);
|
||
|
for(int j = 0; j < len / 2; j++)
|
||
|
{
|
||
|
Complex u = x.get(i + j);
|
||
|
Complex v = w.multiply(x.get(i + j + len/2));
|
||
|
x.set(i + j, u.add(v));
|
||
|
x.set(i + j + len/2, u.subtract(v));
|
||
|
w = w.multiply(wlen);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Divide by N if we want the inverse FFT */
|
||
|
if(inverse)
|
||
|
{
|
||
|
for (int i = 0; i < x.size(); i++)
|
||
|
{
|
||
|
Complex z = x.get(i);
|
||
|
x.set(i, z.divide(N));
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* This function reverses the bits of a number.
|
||
|
* It is used in Cooley-Tukey FFT algorithm.
|
||
|
*
|
||
|
* E.g.
|
||
|
* num = 13 = 00001101 in binary
|
||
|
* log2N = 8
|
||
|
* Then reversed = 176 = 10110000 in binary
|
||
|
*
|
||
|
* More info:
|
||
|
* https://cp-algorithms.com/algebra/fft.html
|
||
|
* https://www.geeksforgeeks.org/write-an-efficient-c-program-to-reverse-bits-of-a-number/
|
||
|
*
|
||
|
* @param num The integer you want to reverse its bits.
|
||
|
* @param log2N The number of bits you want to reverse.
|
||
|
* @return The reversed number
|
||
|
* */
|
||
|
private static int reverseBits(int num, int log2N)
|
||
|
{
|
||
|
int reversed = 0;
|
||
|
for(int i = 0; i < log2N; i++)
|
||
|
{
|
||
|
if((num & (1 << i)) != 0)
|
||
|
reversed |= 1 << (log2N - 1 - i);
|
||
|
}
|
||
|
return reversed;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* This method pads an ArrayList with zeros in order to have a size equal to the next power of two of the previous size.
|
||
|
*
|
||
|
* @param x The ArrayList to be padded.
|
||
|
* */
|
||
|
private static void paddingPowerOfTwo(ArrayList<Complex> x)
|
||
|
{
|
||
|
int n = 1;
|
||
|
int oldSize = x.size();
|
||
|
while(n < oldSize)
|
||
|
n *= 2;
|
||
|
for(int i = 0; i < n - oldSize; i++)
|
||
|
x.add(new Complex());
|
||
|
}
|
||
|
}
|