JavaAlgorithms/Maths/ConvolutionFFT.java

61 lines
2.2 KiB
Java
Raw Normal View History

2021-10-16 21:43:51 +08:00
package Maths;
import java.util.ArrayList;
/**
* Class for linear convolution of two discrete signals using the convolution theorem.
*
* @author Ioannis Karavitsis
* @version 1.0
2021-02-27 03:22:37 +08:00
*/
public class ConvolutionFFT {
/**
* This method pads the signal with zeros until it reaches the new size.
*
* @param x The signal to be padded.
* @param newSize The new size of the signal.
*/
private static void padding(ArrayList<FFT.Complex> x, int newSize) {
if (x.size() < newSize) {
int diff = newSize - x.size();
for (int i = 0; i < diff; i++) x.add(new FFT.Complex());
}
2021-02-27 03:22:37 +08:00
}
2021-02-27 03:22:37 +08:00
/**
* Discrete linear convolution function. It uses the convolution theorem for discrete signals
* convolved: = IDFT(DFT(a)*DFT(b)). This is true for circular convolution. In order to get the
* linear convolution of the two signals we first pad the two signals to have the same size equal
* to the convolved signal (a.size() + b.size() - 1). Then we use the FFT algorithm for faster
* calculations of the two DFTs and the final IDFT.
*
* <p>More info: https://en.wikipedia.org/wiki/Convolution_theorem
* https://ccrma.stanford.edu/~jos/ReviewFourier/FFT_Convolution.html
*
* @param a The first signal.
* @param b The other signal.
* @return The convolved signal.
*/
public static ArrayList<FFT.Complex> convolutionFFT(
ArrayList<FFT.Complex> a, ArrayList<FFT.Complex> b) {
int convolvedSize = a.size() + b.size() - 1; // The size of the convolved signal
padding(a, convolvedSize); // Zero padding both signals
padding(b, convolvedSize);
2021-02-27 03:22:37 +08:00
/* Find the FFTs of both signals (Note that the size of the FFTs will be bigger than the convolvedSize because of the extra zero padding in FFT algorithm) */
FFT.fft(a, false);
FFT.fft(b, false);
ArrayList<FFT.Complex> convolved = new ArrayList<>();
2021-02-27 03:22:37 +08:00
for (int i = 0; i < a.size(); i++) convolved.add(a.get(i).multiply(b.get(i))); // FFT(a)*FFT(b)
2021-02-27 03:22:37 +08:00
FFT.fft(convolved, true); // IFFT
convolved
.subList(convolvedSize, convolved.size())
.clear(); // Remove the remaining zeros after the convolvedSize. These extra zeros came from
// paddingPowerOfTwo() method inside the fft() method.
2021-02-27 03:22:37 +08:00
return convolved;
}
}