JavaAlgorithms/DynamicProgramming/EditDistance.java

119 lines
3.8 KiB
Java
Raw Normal View History

2019-05-10 10:25:19 +08:00
package DynamicProgramming;
/**
2020-10-24 18:23:28 +08:00
* A DynamicProgramming based solution for Edit Distance problem In Java Description of Edit
* Distance with an Example:
*
* <p>Edit distance is a way of quantifying how dissimilar two strings (e.g., words) are to one
* another, by counting the minimum number of operations required to transform one string into the
* other. The distance operations are the removal, insertion, or substitution of a character in the
* string.
*
* <p>
2020-10-24 18:23:28 +08:00
*
* <p>The Distance between "kitten" and "sitting" is 3. A minimal edit script that transforms the
* former into the latter is:
*
* <p>kitten sitten (substitution of "s" for "k") sitten sittin (substitution of "i" for "e")
* sittin sitting (insertion of "g" at the end).
2019-05-10 10:25:19 +08:00
*
* @author SUBHAM SANGHAI
2020-10-24 18:23:28 +08:00
*/
import java.util.Scanner;
2019-05-10 10:25:19 +08:00
public class EditDistance {
2020-10-24 18:23:28 +08:00
public static int minDistance(String word1, String word2) {
int len1 = word1.length();
int len2 = word2.length();
// len1+1, len2+1, because finally return dp[len1][len2]
int[][] dp = new int[len1 + 1][len2 + 1];
/* If second string is empty, the only option is to
insert all characters of first string into second*/
for (int i = 0; i <= len1; i++) {
dp[i][0] = i;
}
/* If first string is empty, the only option is to
insert all characters of second string into first*/
for (int j = 0; j <= len2; j++) {
dp[0][j] = j;
}
// iterate though, and check last char
for (int i = 0; i < len1; i++) {
char c1 = word1.charAt(i);
for (int j = 0; j < len2; j++) {
char c2 = word2.charAt(j);
// if last two chars equal
if (c1 == c2) {
// update dp value for +1 length
dp[i + 1][j + 1] = dp[i][j];
} else {
/* if two characters are different ,
then take the minimum of the various operations(i.e insertion,removal,substitution)*/
int replace = dp[i][j] + 1;
int insert = dp[i][j + 1] + 1;
int delete = dp[i + 1][j] + 1;
2020-10-24 18:23:28 +08:00
int min = replace > insert ? insert : replace;
min = delete > min ? min : delete;
dp[i + 1][j + 1] = min;
}
2020-10-24 18:23:28 +08:00
}
}
2020-10-24 18:23:28 +08:00
/* return the final answer , after traversing through both the strings*/
return dp[len1][len2];
}
2020-10-24 18:23:28 +08:00
public static void main(String[] args) {
Scanner input = new Scanner(System.in);
String s1, s2;
System.out.println("Enter the First String");
s1 = input.nextLine();
System.out.println("Enter the Second String");
s2 = input.nextLine();
// ans stores the final Edit Distance between the two strings
int ans = minDistance(s1, s2);
System.out.println(
"The minimum Edit Distance between \"" + s1 + "\" and \"" + s2 + "\" is " + ans);
input.close();
}
// edit distance problem
public static int editDistance(String s1, String s2){
int[][] storage = new int[s1.length() + 1][s2.length() + 1];
return editDistance(s1, s2,storage);
}
public static int editDistance(String s1, String s2, int[][] storage) {
int m = s1.length();
int n = s2.length();
if (storage[m][n] > 0) {
return storage[m][n];
}
if (m== 0) {
storage[m][n] = n;
return storage[m][n];
}
if (n== 0) {
storage[m][n] = m;
return storage[m][n];
}
if (s1.charAt(0) == s2.charAt(0)) {
storage[m][n] = editDistance(s1.substring(1), s2.substring(1), storage);
return storage[m][n];
} else {
int op1 = editDistance(s1, s2.substring(1),storage);
int op2 = editDistance(s1.substring(1), s2,storage);
int op3 = editDistance(s1.substring(1),s2.substring(1),storage);
storage[m][n] = 1 + Math.min(op1, Math.min(op2, op3));
return storage[m][n];
}
}
}