61 lines
1.7 KiB
Java
61 lines
1.7 KiB
Java
|
package DynamicProgramming;
|
||
|
|
||
|
/**
|
||
|
* This file contains an implementation of finding the nth CATALAN NUMBER using dynamic programming
|
||
|
* Wikipedia: https://en.wikipedia.org/wiki/Catalan_number
|
||
|
*
|
||
|
* Time Complexity: O(n^2)
|
||
|
* Space Complexity: O(n)
|
||
|
*
|
||
|
* @author AMRITESH ANAND (https://github.com/amritesh19)
|
||
|
*/
|
||
|
|
||
|
import java.util.Scanner;
|
||
|
|
||
|
public class CatalanNumber {
|
||
|
|
||
|
/**
|
||
|
* This method finds the nth Catalan number
|
||
|
*
|
||
|
* @param n input n which determines the nth Catalan number
|
||
|
* n should be less than equal to 50 as 50th Catalan number is 6,533,841,209,031,609,592
|
||
|
* for n > 50, BigInteger class should be used instead long
|
||
|
*
|
||
|
* @return catalanArray[n] the nth Catalan number
|
||
|
*/
|
||
|
static long findNthCatalan(int n){
|
||
|
|
||
|
// Array to store the results of subproblems i.e Catalan numbers from [1...n-1]
|
||
|
long catalanArray[] = new long[n + 1];
|
||
|
|
||
|
// Initialising C₀ = 1 and C₁ = 1
|
||
|
catalanArray[0] = 1;
|
||
|
catalanArray[1] = 1;
|
||
|
|
||
|
/**
|
||
|
* The Catalan numbers satisfy the recurrence relation
|
||
|
* C₀=1 and Cn = Σ (Ci * Cn-1-i), i = 0 to n-1 , n > 0
|
||
|
*/
|
||
|
for(int i = 2; i <= n; i++){
|
||
|
catalanArray[i] = 0;
|
||
|
for(int j = 0; j < i; j++){
|
||
|
catalanArray[i] += catalanArray[j] * catalanArray[i - j - 1];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return catalanArray[n];
|
||
|
}
|
||
|
|
||
|
// Main method
|
||
|
public static void main(String[] args) {
|
||
|
Scanner sc = new Scanner(System.in);
|
||
|
|
||
|
System.out.println("Enter the number n to find nth Catalan number (n <= 50)");
|
||
|
int n = sc.nextInt();
|
||
|
System.out.println(n + "th Catalan number is " + findNthCatalan(n));
|
||
|
|
||
|
sc.close();
|
||
|
}
|
||
|
}
|
||
|
|