JavaAlgorithms/DivideAndConquer/StrassenMatrixMultiplication.java

182 lines
5.0 KiB
Java
Raw Normal View History

// Java Program to Implement Strassen Algorithm
// Class Strassen matrix multiplication
public class StrassenMatrixMultiplication {
// Method 1
// Function to multiply matrices
public int[][] multiply(int[][] A, int[][] B)
{
int n = A.length;
int[][] R = new int[n][n];
if (n == 1)
R[0][0] = A[0][0] * B[0][0];
else {
// Dividing Matrix into parts
// by storing sub-parts to variables
int[][] A11 = new int[n / 2][n / 2];
int[][] A12 = new int[n / 2][n / 2];
int[][] A21 = new int[n / 2][n / 2];
int[][] A22 = new int[n / 2][n / 2];
int[][] B11 = new int[n / 2][n / 2];
int[][] B12 = new int[n / 2][n / 2];
int[][] B21 = new int[n / 2][n / 2];
int[][] B22 = new int[n / 2][n / 2];
// Dividing matrix A into 4 parts
split(A, A11, 0, 0);
split(A, A12, 0, n / 2);
split(A, A21, n / 2, 0);
split(A, A22, n / 2, n / 2);
// Dividing matrix B into 4 parts
split(B, B11, 0, 0);
split(B, B12, 0, n / 2);
split(B, B21, n / 2, 0);
split(B, B22, n / 2, n / 2);
// Using Formulas as described in algorithm
// M1:=(A1+A3)×(B1+B2)
int[][] M1
= multiply(add(A11, A22), add(B11, B22));
// M2:=(A2+A4)×(B3+B4)
int[][] M2 = multiply(add(A21, A22), B11);
// M3:=(A1A4)×(B1+A4)
int[][] M3 = multiply(A11, sub(B12, B22));
// M4:=A1×(B2B4)
int[][] M4 = multiply(A22, sub(B21, B11));
// M5:=(A3+A4)×(B1)
int[][] M5 = multiply(add(A11, A12), B22);
// M6:=(A1+A2)×(B4)
int[][] M6
= multiply(sub(A21, A11), add(B11, B12));
// M7:=A4×(B3B1)
int[][] M7
= multiply(sub(A12, A22), add(B21, B22));
// P:=M2+M3M6M7
int[][] C11 = add(sub(add(M1, M4), M5), M7);
// Q:=M4+M6
int[][] C12 = add(M3, M5);
// R:=M5+M7
int[][] C21 = add(M2, M4);
// S:=M1M3M4M5
int[][] C22 = add(sub(add(M1, M3), M2), M6);
join(C11, R, 0, 0);
join(C12, R, 0, n / 2);
join(C21, R, n / 2, 0);
join(C22, R, n / 2, n / 2);
}
return R;
}
// Method 2
// Function to subtract two matrices
public int[][] sub(int[][] A, int[][] B)
{
int n = A.length;
int[][] C = new int[n][n];
for (int i = 0; i < n; i++)
for (int j = 0; j < n; j++)
C[i][j] = A[i][j] - B[i][j];
return C;
}
// Method 3
// Function to add two matrices
public int[][] add(int[][] A, int[][] B)
{
int n = A.length;
int[][] C = new int[n][n];
for (int i = 0; i < n; i++)
for (int j = 0; j < n; j++)
C[i][j] = A[i][j] + B[i][j];
return C;
}
// Method 4
// Function to split parent matrix
// into child matrices
public void split(int[][] P, int[][] C, int iB, int jB)
{
for (int i1 = 0, i2 = iB; i1 < C.length; i1++, i2++)
for (int j1 = 0, j2 = jB; j1 < C.length; j1++, j2++)
C[i1][j1] = P[i2][j2];
}
// Method 5
// Function to join child matrices
// into (to) parent matrix
public void join(int[][] C, int[][] P, int iB, int jB)
{
for (int i1 = 0, i2 = iB; i1 < C.length; i1++, i2++)
for (int j1 = 0, j2 = jB; j1 < C.length; j1++, j2++)
P[i2][j2] = C[i1][j1];
}
// Method 5
// Main driver method
public static void main(String[] args)
{
System.out.println("Strassen Multiplication Algorithm Implementation For Matrix Multiplication :\n");
StrassenMatrixMultiplication s = new StrassenMatrixMultiplication();
// Size of matrix
// Considering size as 4 in order to illustrate
int N = 4;
// Matrix A
// Custom input to matrix
int[][] A = { { 1, 2, 5, 4 },
{ 9, 3, 0, 6 },
{ 4, 6, 3, 1 },
{ 0, 2, 0, 6 } };
// Matrix B
// Custom input to matrix
int[][] B = { { 1, 0, 4, 1 },
{ 1, 2, 0, 2 },
{ 0, 3, 1, 3 },
{ 1, 8, 1, 2 } };
// Matrix C computations
// Matrix C calling method to get Result
int[][] C = s.multiply(A, B);
System.out.println("\nProduct of matrices A and B : ");
// Print the output
for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++)
System.out.print(C[i][j] + " ");
System.out.println();
}
}
}