127 lines
3.6 KiB
Java
127 lines
3.6 KiB
Java
|
package Backtracking;
|
||
|
|
||
|
import java.util.*;
|
||
|
|
||
|
/*
|
||
|
* Problem Statement: -
|
||
|
|
||
|
Given a N*N board with the Knight placed on the first block of an empty board. Moving according to the rules of
|
||
|
chess knight must visit each square exactly once. Print the order of each cell in which they are visited.
|
||
|
|
||
|
Example: -
|
||
|
|
||
|
Input : N = 8
|
||
|
|
||
|
Output:
|
||
|
0 59 38 33 30 17 8 63
|
||
|
37 34 31 60 9 62 29 16
|
||
|
58 1 36 39 32 27 18 7
|
||
|
35 48 41 26 61 10 15 28
|
||
|
42 57 2 49 40 23 6 19
|
||
|
47 50 45 54 25 20 11 14
|
||
|
56 43 52 3 22 13 24 5
|
||
|
51 46 55 44 53 4 21 12
|
||
|
|
||
|
*/
|
||
|
|
||
|
public class KnightsTour {
|
||
|
private final static int base = 12;
|
||
|
private final static int[][] moves = {{1,-2},{2,-1},{2,1},{1,2},{-1,2},{-2,1},{-2,-1},{-1,-2}}; // Possible moves by knight on chess
|
||
|
private static int[][] grid; // chess grid
|
||
|
private static int total; // total squares in chess
|
||
|
|
||
|
public static void main(String[] args) {
|
||
|
grid = new int[base][base];
|
||
|
total = (base - 4) * (base - 4);
|
||
|
|
||
|
for (int r = 0; r < base; r++)
|
||
|
for (int c = 0; c < base; c++)
|
||
|
if (r < 2 || r > base - 3 || c < 2 || c > base - 3)
|
||
|
grid[r][c] = -1;
|
||
|
|
||
|
int row = 2 + (int) (Math.random() * (base - 4));
|
||
|
int col = 2 + (int) (Math.random() * (base - 4));
|
||
|
|
||
|
grid[row][col] = 1;
|
||
|
|
||
|
if (solve(row, col, 2))
|
||
|
printResult();
|
||
|
else System.out.println("no result");
|
||
|
|
||
|
}
|
||
|
|
||
|
// Return True when solvable
|
||
|
private static boolean solve(int row, int column, int count) {
|
||
|
if (count > total)
|
||
|
return true;
|
||
|
|
||
|
List<int[]> neighbor = neighbors(row, column);
|
||
|
|
||
|
if (neighbor.isEmpty() && count != total)
|
||
|
return false;
|
||
|
|
||
|
Collections.sort(neighbor, new Comparator<int[]>() {
|
||
|
public int compare(int[] a, int[] b) {
|
||
|
return a[2] - b[2];
|
||
|
}
|
||
|
});
|
||
|
|
||
|
for (int[] nb : neighbor) {
|
||
|
row = nb[0];
|
||
|
column = nb[1];
|
||
|
grid[row][column] = count;
|
||
|
if (!orphanDetected(count, row, column) && solve(row, column, count + 1))
|
||
|
return true;
|
||
|
grid[row][column] = 0;
|
||
|
}
|
||
|
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
// Returns List of neighbours
|
||
|
private static List<int[]> neighbors(int row, int column) {
|
||
|
List<int[]> neighbour = new ArrayList<>();
|
||
|
|
||
|
for (int[] m : moves) {
|
||
|
int x = m[0];
|
||
|
int y = m[1];
|
||
|
if (grid[row + y][column + x] == 0) {
|
||
|
int num = countNeighbors(row + y, column + x);
|
||
|
neighbour.add(new int[]{row + y, column + x, num});
|
||
|
}
|
||
|
}
|
||
|
return neighbour;
|
||
|
}
|
||
|
|
||
|
// Returns the total count of neighbors
|
||
|
private static int countNeighbors(int row, int column) {
|
||
|
int num = 0;
|
||
|
for (int[] m : moves)
|
||
|
if (grid[row + m[1]][column + m[0]] == 0)
|
||
|
num++;
|
||
|
return num;
|
||
|
}
|
||
|
|
||
|
// Returns true if it is orphan
|
||
|
private static boolean orphanDetected(int count, int row, int column) {
|
||
|
if (count < total - 1) {
|
||
|
List<int[]> neighbor = neighbors(row, column);
|
||
|
for (int[] nb : neighbor)
|
||
|
if (countNeighbors(nb[0], nb[1]) == 0)
|
||
|
return true;
|
||
|
}
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
// Prints the result grid
|
||
|
private static void printResult() {
|
||
|
for (int[] row : grid) {
|
||
|
for (int i : row) {
|
||
|
if (i == -1) continue;
|
||
|
System.out.printf("%2d ", i);
|
||
|
}
|
||
|
System.out.println();
|
||
|
}
|
||
|
}
|
||
|
}
|