2021-10-16 21:43:51 +08:00
package Maths ;
2021-02-27 03:21:48 +08:00
import java.util.ArrayList ;
/ * *
* Class for linear convolution of two discrete signals using the convolution theorem .
*
* @author Ioannis Karavitsis
* @version 1 . 0
2021-02-27 03:22:37 +08:00
* /
public class ConvolutionFFT {
/ * *
* This method pads the signal with zeros until it reaches the new size .
*
* @param x The signal to be padded .
* @param newSize The new size of the signal .
* /
private static void padding ( ArrayList < FFT . Complex > x , int newSize ) {
if ( x . size ( ) < newSize ) {
int diff = newSize - x . size ( ) ;
for ( int i = 0 ; i < diff ; i + + ) x . add ( new FFT . Complex ( ) ) ;
2021-02-27 03:21:48 +08:00
}
2021-02-27 03:22:37 +08:00
}
2021-02-27 03:21:48 +08:00
2021-02-27 03:22:37 +08:00
/ * *
* Discrete linear convolution function . It uses the convolution theorem for discrete signals
* convolved : = IDFT ( DFT ( a ) * DFT ( b ) ) . This is true for circular convolution . In order to get the
* linear convolution of the two signals we first pad the two signals to have the same size equal
* to the convolved signal ( a . size ( ) + b . size ( ) - 1 ) . Then we use the FFT algorithm for faster
* calculations of the two DFTs and the final IDFT .
*
* < p > More info : https : //en.wikipedia.org/wiki/Convolution_theorem
* https : //ccrma.stanford.edu/~jos/ReviewFourier/FFT_Convolution.html
*
* @param a The first signal .
* @param b The other signal .
* @return The convolved signal .
* /
public static ArrayList < FFT . Complex > convolutionFFT (
ArrayList < FFT . Complex > a , ArrayList < FFT . Complex > b ) {
int convolvedSize = a . size ( ) + b . size ( ) - 1 ; // The size of the convolved signal
padding ( a , convolvedSize ) ; // Zero padding both signals
padding ( b , convolvedSize ) ;
2021-02-27 03:21:48 +08:00
2021-02-27 03:22:37 +08:00
/* Find the FFTs of both signals (Note that the size of the FFTs will be bigger than the convolvedSize because of the extra zero padding in FFT algorithm) */
FFT . fft ( a , false ) ;
FFT . fft ( b , false ) ;
ArrayList < FFT . Complex > convolved = new ArrayList < > ( ) ;
2021-02-27 03:21:48 +08:00
2021-02-27 03:22:37 +08:00
for ( int i = 0 ; i < a . size ( ) ; i + + ) convolved . add ( a . get ( i ) . multiply ( b . get ( i ) ) ) ; // FFT(a)*FFT(b)
2021-02-27 03:21:48 +08:00
2021-02-27 03:22:37 +08:00
FFT . fft ( convolved , true ) ; // IFFT
convolved
. subList ( convolvedSize , convolved . size ( ) )
. clear ( ) ; // Remove the remaining zeros after the convolvedSize. These extra zeros came from
2021-02-28 00:46:25 +08:00
// paddingPowerOfTwo() method inside the fft() method.
2021-02-27 03:21:48 +08:00
2021-02-27 03:22:37 +08:00
return convolved ;
}
2021-02-27 03:21:48 +08:00
}