JavaAlgorithms/Maths/CircularConvolutionFFT.java

56 lines
1.8 KiB
Java
Raw Normal View History

2021-10-16 21:43:51 +08:00
package Maths;
import java.util.ArrayList;
/**
* Class for circular convolution of two discrete signals using the convolution theorem.
*
* @author Ioannis Karavitsis
* @version 1.0
2021-02-27 03:22:37 +08:00
*/
public class CircularConvolutionFFT {
/**
* This method pads the signal with zeros until it reaches the new size.
*
* @param x The signal to be padded.
* @param newSize The new size of the signal.
*/
private static void padding(ArrayList<FFT.Complex> x, int newSize) {
if (x.size() < newSize) {
int diff = newSize - x.size();
for (int i = 0; i < diff; i++) x.add(new FFT.Complex());
}
2021-02-27 03:22:37 +08:00
}
2021-02-27 03:22:37 +08:00
/**
* Discrete circular convolution function. It uses the convolution theorem for discrete signals:
* convolved = IDFT(DFT(a)*DFT(b)). Then we use the FFT algorithm for faster calculations of the
* two DFTs and the final IDFT.
*
* <p>More info: https://en.wikipedia.org/wiki/Convolution_theorem
*
* @param a The first signal.
* @param b The other signal.
* @return The convolved signal.
*/
public static ArrayList<FFT.Complex> fftCircularConvolution(
ArrayList<FFT.Complex> a, ArrayList<FFT.Complex> b) {
int convolvedSize =
Math.max(
a.size(), b.size()); // The two signals must have the same size equal to the bigger one
padding(a, convolvedSize); // Zero padding the smaller signal
padding(b, convolvedSize);
2021-02-27 03:22:37 +08:00
/* Find the FFTs of both signal. Here we use the Bluestein algorithm because we want the FFT to have the same length with the signal and not bigger */
FFTBluestein.fftBluestein(a, false);
FFTBluestein.fftBluestein(b, false);
ArrayList<FFT.Complex> convolved = new ArrayList<>();
2021-02-27 03:22:37 +08:00
for (int i = 0; i < a.size(); i++) convolved.add(a.get(i).multiply(b.get(i))); // FFT(a)*FFT(b)
2021-02-27 03:22:37 +08:00
FFTBluestein.fftBluestein(convolved, true); // IFFT
2021-02-27 03:22:37 +08:00
return convolved;
}
}