2019-05-09 19:32:54 +08:00
|
|
|
package DynamicProgramming;
|
|
|
|
|
2019-02-23 21:06:32 +08:00
|
|
|
/**
|
2019-05-09 19:32:54 +08:00
|
|
|
* DynamicProgramming solution for the Egg Dropping Puzzle
|
2019-02-23 21:06:32 +08:00
|
|
|
*/
|
|
|
|
public class EggDropping {
|
|
|
|
|
|
|
|
// min trials with n eggs and m floors
|
|
|
|
|
|
|
|
private static int minTrials(int n, int m) {
|
|
|
|
|
|
|
|
int[][] eggFloor = new int[n + 1][m + 1];
|
|
|
|
int result, x;
|
|
|
|
|
|
|
|
for (int i = 1; i <= n; i++) {
|
|
|
|
eggFloor[i][0] = 0; // Zero trial for zero floor.
|
|
|
|
eggFloor[i][1] = 1; // One trial for one floor
|
|
|
|
}
|
|
|
|
|
|
|
|
// j trials for only 1 egg
|
|
|
|
|
|
|
|
for (int j = 1; j <= m; j++)
|
|
|
|
eggFloor[1][j] = j;
|
|
|
|
|
|
|
|
// Using bottom-up approach in DP
|
|
|
|
|
|
|
|
for (int i = 2; i <= n; i++) {
|
|
|
|
for (int j = 2; j <= m; j++) {
|
|
|
|
eggFloor[i][j] = Integer.MAX_VALUE;
|
|
|
|
for (x = 1; x <= j; x++) {
|
|
|
|
result = 1 + Math.max(eggFloor[i - 1][x - 1], eggFloor[i][j - x]);
|
|
|
|
|
|
|
|
// choose min of all values for particular x
|
|
|
|
if (result < eggFloor[i][j])
|
|
|
|
eggFloor[i][j] = result;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return eggFloor[n][m];
|
|
|
|
}
|
2019-05-09 19:32:54 +08:00
|
|
|
|
2019-02-23 21:06:32 +08:00
|
|
|
public static void main(String args[]) {
|
|
|
|
int n = 2, m = 4;
|
|
|
|
// result outputs min no. of trials in worst case for n eggs and m floors
|
|
|
|
int result = minTrials(n, m);
|
|
|
|
System.out.println(result);
|
|
|
|
}
|
2017-10-05 21:56:35 +08:00
|
|
|
}
|