96 lines
2.8 KiB
Java
96 lines
2.8 KiB
Java
|
package DataStructures.Stacks;
|
||
|
|
||
|
import java.util.Arrays;
|
||
|
import java.util.Stack;
|
||
|
|
||
|
/**
|
||
|
* Given an integer array. The task is to find the maximum of the minimum of every window size in the array.
|
||
|
* Note: Window size varies from 1 to the size of the Array.
|
||
|
* <p>
|
||
|
* For example,
|
||
|
* <p>
|
||
|
* N = 7
|
||
|
* arr[] = {10,20,30,50,10,70,30}
|
||
|
* <p>
|
||
|
* So the answer for the above would be : 70 30 20 10 10 10 10
|
||
|
* <p>
|
||
|
* We need to consider window sizes from 1 to length of array in each iteration.
|
||
|
* So in the iteration 1 the windows would be [10], [20], [30], [50], [10], [70], [30].
|
||
|
* Now we need to check the minimum value in each window. Since the window size is 1 here the minimum element would be the number itself.
|
||
|
* Now the maximum out of these is the result in iteration 1.
|
||
|
* In the second iteration we need to consider window size 2, so there would be [10,20], [20,30], [30,50], [50,10], [10,70], [70,30].
|
||
|
* Now the minimum of each window size would be [10,20,30,10,10] and the maximum out of these is 30.
|
||
|
* Similarly we solve for other window sizes.
|
||
|
*
|
||
|
* @author sahil
|
||
|
*/
|
||
|
public class MaximumMinimumWindow {
|
||
|
|
||
|
/**
|
||
|
* This function contains the logic of finding maximum of minimum for every window size
|
||
|
* using Stack Data Structure.
|
||
|
*
|
||
|
* @param arr Array containing the numbers
|
||
|
* @param n Length of the array
|
||
|
* @return result array
|
||
|
*/
|
||
|
public static int[] calculateMaxOfMin(int[] arr, int n) {
|
||
|
Stack<Integer> s = new Stack<>();
|
||
|
int left[] = new int[n + 1];
|
||
|
int right[] = new int[n + 1];
|
||
|
for (int i = 0; i < n; i++) {
|
||
|
left[i] = -1;
|
||
|
right[i] = n;
|
||
|
}
|
||
|
|
||
|
for (int i = 0; i < n; i++) {
|
||
|
while (!s.empty() && arr[s.peek()] >= arr[i])
|
||
|
s.pop();
|
||
|
|
||
|
if (!s.empty())
|
||
|
left[i] = s.peek();
|
||
|
|
||
|
s.push(i);
|
||
|
}
|
||
|
|
||
|
while (!s.empty())
|
||
|
s.pop();
|
||
|
|
||
|
for (int i = n - 1; i >= 0; i--) {
|
||
|
while (!s.empty() && arr[s.peek()] >= arr[i])
|
||
|
s.pop();
|
||
|
|
||
|
if (!s.empty())
|
||
|
right[i] = s.peek();
|
||
|
|
||
|
s.push(i);
|
||
|
}
|
||
|
|
||
|
int ans[] = new int[n + 1];
|
||
|
for (int i = 0; i <= n; i++)
|
||
|
ans[i] = 0;
|
||
|
|
||
|
for (int i = 0; i < n; i++) {
|
||
|
int len = right[i] - left[i] - 1;
|
||
|
|
||
|
ans[len] = Math.max(ans[len], arr[i]);
|
||
|
}
|
||
|
|
||
|
for (int i = n - 1; i >= 1; i--)
|
||
|
ans[i] = Math.max(ans[i], ans[i + 1]);
|
||
|
|
||
|
// Print the result
|
||
|
for (int i = 1; i <= n; i++)
|
||
|
System.out.print(ans[i] + " ");
|
||
|
return ans;
|
||
|
}
|
||
|
|
||
|
public static void main(String args[]) {
|
||
|
int[] arr = new int[]{10, 20, 30, 50, 10, 70, 30};
|
||
|
int[] target = new int[]{70, 30, 20, 10, 10, 10, 10};
|
||
|
int[] res = calculateMaxOfMin(arr, arr.length);
|
||
|
assert Arrays.equals(target, res);
|
||
|
}
|
||
|
|
||
|
}
|