227 lines
5.0 KiB
Plaintext
227 lines
5.0 KiB
Plaintext
|
import java.util.ArrayList;
|
||
|
import java.util.LinkedList;
|
||
|
import java.util.Scanner;
|
||
|
|
||
|
public class treeclass {
|
||
|
private class Node {
|
||
|
int data;
|
||
|
ArrayList<Node> child = new ArrayList<>();
|
||
|
}
|
||
|
|
||
|
private Node root;
|
||
|
private int size;
|
||
|
|
||
|
/*
|
||
|
A generic tree is a tree which can have as many children as it can be
|
||
|
It might be possible that every node present is directly connected to
|
||
|
root node.
|
||
|
|
||
|
In this code
|
||
|
Every function has two copies: one function is helper function which can be called from
|
||
|
main and from that function a private function is called which will do the actual work.
|
||
|
I have done this, while calling from main one have to give minimum parameters.
|
||
|
|
||
|
*/
|
||
|
public treeclass() { //Constructor
|
||
|
Scanner scn = new Scanner(System.in);
|
||
|
root = create_treeG(null, 0, scn);
|
||
|
}
|
||
|
|
||
|
private Node create_treeG(Node node, int childindx, Scanner scn) {
|
||
|
// display
|
||
|
if (node == null) {
|
||
|
System.out.println("Enter root's data");
|
||
|
} else {
|
||
|
System.out.println("Enter data of parent of index " + node.data + " " + childindx);
|
||
|
}
|
||
|
// input
|
||
|
node = new Node();
|
||
|
node.data = scn.nextInt();
|
||
|
System.out.println("number of children");
|
||
|
int number = scn.nextInt();
|
||
|
for (int i = 0; i < number; i++) {
|
||
|
Node childd = create_treeG(node, i, scn);
|
||
|
size++;
|
||
|
node.child.add(childd);
|
||
|
}
|
||
|
return node;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
Function to display the generic tree
|
||
|
*/
|
||
|
public void display() { //Helper function
|
||
|
display_1(root);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
private void display_1(Node parent) {
|
||
|
System.out.print(parent.data + "=>");
|
||
|
for (int i = 0; i < parent.child.size(); i++) {
|
||
|
System.out.print(parent.child.get(i).data + " ");
|
||
|
}
|
||
|
System.out.println(".");
|
||
|
for (int i = 0; i < parent.child.size(); i++) {
|
||
|
display_1(parent.child.get(i));
|
||
|
}
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
One call store the size directly but if you are asked compute size this function to calcuate
|
||
|
size goes as follows
|
||
|
*/
|
||
|
|
||
|
public int size2call() {
|
||
|
return size2(root);
|
||
|
}
|
||
|
|
||
|
public int size2(Node roott) {
|
||
|
int sz = 0;
|
||
|
for (int i = 0; i < roott.child.size(); i++) {
|
||
|
sz += size2(roott.child.get(i));
|
||
|
}
|
||
|
return sz + 1;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
Function to compute maximum value in the generic tree
|
||
|
*/
|
||
|
public int maxcall() {
|
||
|
int maxi = root.data;
|
||
|
return max(root, maxi);
|
||
|
}
|
||
|
|
||
|
private int max(Node roott, int maxi) {
|
||
|
if (maxi < roott.data)
|
||
|
maxi = roott.data;
|
||
|
for (int i = 0; i < roott.child.size(); i++) {
|
||
|
maxi = max(roott.child.get(i), maxi);
|
||
|
}
|
||
|
|
||
|
return maxi;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
Function to compute HEIGHT of the generic tree
|
||
|
*/
|
||
|
|
||
|
public int heightcall() {
|
||
|
return height(root) - 1;
|
||
|
}
|
||
|
|
||
|
private int height(Node node) {
|
||
|
int h = 0;
|
||
|
for (int i = 0; i < node.child.size(); i++) {
|
||
|
int k = height(node.child.get(i));
|
||
|
if (k > h)
|
||
|
h = k;
|
||
|
}
|
||
|
return h + 1;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
Function to find whether a number is present in the generic tree or not
|
||
|
*/
|
||
|
|
||
|
public boolean findcall(int info) {
|
||
|
return find(root, info);
|
||
|
}
|
||
|
|
||
|
private boolean find(Node node, int info) {
|
||
|
if (node.data == info)
|
||
|
return true;
|
||
|
for (int i = 0; i < node.child.size(); i++) {
|
||
|
if (find(node.child.get(i), info))
|
||
|
return true;
|
||
|
}
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
Function to calculate depth of generic tree
|
||
|
*/
|
||
|
public void depthcaller(int dep) {
|
||
|
depth(root, dep);
|
||
|
}
|
||
|
|
||
|
public void depth(Node node, int dep) {
|
||
|
if (dep == 0) {
|
||
|
System.out.println(node.data);
|
||
|
return;
|
||
|
}
|
||
|
for (int i = 0; i < node.child.size(); i++)
|
||
|
depth(node.child.get(i), dep - 1);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
Function to print generic tree in pre-order
|
||
|
*/
|
||
|
public void preordercall() {
|
||
|
preorder(root);
|
||
|
System.out.println(".");
|
||
|
}
|
||
|
|
||
|
private void preorder(Node node) {
|
||
|
System.out.print(node.data + " ");
|
||
|
for (int i = 0; i < node.child.size(); i++)
|
||
|
preorder(node.child.get(i));
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
Function to print generic tree in post-order
|
||
|
*/
|
||
|
public void postordercall() {
|
||
|
postorder(root);
|
||
|
System.out.println(".");
|
||
|
}
|
||
|
|
||
|
private void postorder(Node node) {
|
||
|
for (int i = 0; i < node.child.size(); i++)
|
||
|
postorder(node.child.get(i));
|
||
|
System.out.print(node.data + " ");
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
Function to print generic tree in level-order
|
||
|
*/
|
||
|
|
||
|
public void levelorder() {
|
||
|
LinkedList<Node> q = new LinkedList<>();
|
||
|
q.addLast(root);
|
||
|
while (!q.isEmpty()) {
|
||
|
int k = q.getFirst().data;
|
||
|
System.out.print(k + " ");
|
||
|
|
||
|
for (int i = 0; i < q.getFirst().child.size(); i++) {
|
||
|
q.addLast(q.getFirst().child.get(i));
|
||
|
}
|
||
|
q.removeFirst();
|
||
|
}
|
||
|
System.out.println(".");
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
Function to remove all leaves of generic tree
|
||
|
*/
|
||
|
public void removeleavescall() {
|
||
|
removeleaves(root);
|
||
|
}
|
||
|
|
||
|
private void removeleaves(Node node) {
|
||
|
ArrayList<Integer> arr = new ArrayList<>();
|
||
|
for (int i = 0; i < node.child.size(); i++) {
|
||
|
if (node.child.get(i).child.size() == 0) {
|
||
|
arr.add(i);
|
||
|
// node.child.remove(i);
|
||
|
// i--;
|
||
|
} else
|
||
|
removeleaves(node.child.get(i));
|
||
|
}
|
||
|
for (int i = arr.size() - 1; i >= 0; i--) {
|
||
|
node.child.remove(arr.get(i) + 0);
|
||
|
}
|
||
|
}
|
||
|
|