2019-05-09 19:32:54 +08:00
|
|
|
package Others;
|
|
|
|
|
2021-10-28 03:01:53 +08:00
|
|
|
import java.util.Arrays;
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Sieve of Eratosthenes is an ancient algorithm for finding all prime numbers up to any given limit.
|
|
|
|
* It does so by iteratively marking as composite (i.e., not prime) the multiples of each prime,
|
|
|
|
* starting with the first prime number, 2.
|
|
|
|
* The multiples of a given prime are generated as a sequence of numbers starting from that prime,
|
|
|
|
* with constant difference between them that is equal to that prime.
|
|
|
|
* This is the sieve's key distinction from using trial division to sequentially test each
|
|
|
|
* candidate number for divisibility by each prime.
|
|
|
|
* Once all the multiples of each discovered prime have been marked as composites, the remaining
|
|
|
|
* unmarked numbers are primes.
|
|
|
|
* <p>
|
|
|
|
* Poetry about Sieve of Eratosthenes:
|
|
|
|
* <p><i>Sift the Two's and Sift the Three's:</i></p>
|
|
|
|
* <p><i>The Sieve of Eratosthenes.</i></p>
|
|
|
|
* <p><i>When the multiples sublime,</i></p>
|
|
|
|
* <p><i>The numbers that remain are Prime.</i></p>
|
|
|
|
*
|
|
|
|
* @see <a href="https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes">Wiki</a>
|
|
|
|
*/
|
2017-09-29 02:38:20 +08:00
|
|
|
public class SieveOfEratosthenes {
|
|
|
|
|
2020-10-24 18:23:28 +08:00
|
|
|
/**
|
2021-10-28 03:01:53 +08:00
|
|
|
* @param n The number till which we have to check for prime Prints all the prime numbers till n.
|
|
|
|
* Should be more than 1.
|
|
|
|
* @return array of all prime numbers between 0 to n
|
2020-10-24 18:23:28 +08:00
|
|
|
*/
|
2021-10-28 03:01:53 +08:00
|
|
|
public static int[] findPrimesTill(int n) {
|
|
|
|
// Create array where index is number and value is flag - is that number a prime or not.
|
|
|
|
// size of array is n + 1 cause in Java array indexes starts with 0
|
|
|
|
Type[] numbers = new Type[n + 1];
|
2017-09-29 02:38:20 +08:00
|
|
|
|
2021-10-28 03:01:53 +08:00
|
|
|
// Start with assumption that all numbers except 0 and 1 are primes.
|
|
|
|
Arrays.fill(numbers, Type.PRIME);
|
|
|
|
numbers[0] = numbers[1] = Type.NOT_PRIME;
|
2017-09-29 02:38:20 +08:00
|
|
|
|
2021-10-28 03:01:53 +08:00
|
|
|
double cap = Math.sqrt(n);
|
|
|
|
// Main algorithm: mark all numbers which are multiples of some other values as not prime
|
|
|
|
for (int i = 2; i <= cap; i++) {
|
|
|
|
if (numbers[i] == Type.PRIME) {
|
2020-10-24 18:23:28 +08:00
|
|
|
for (int j = 2; i * j <= n; j++) {
|
2021-10-28 03:01:53 +08:00
|
|
|
numbers[i * j] = Type.NOT_PRIME;
|
2017-09-29 02:38:20 +08:00
|
|
|
}
|
2020-10-24 18:23:28 +08:00
|
|
|
}
|
|
|
|
}
|
2017-09-29 02:38:20 +08:00
|
|
|
|
2021-10-28 03:01:53 +08:00
|
|
|
//Write all primes to result array
|
|
|
|
int primesCount = (int) Arrays.stream(numbers)
|
|
|
|
.filter(element -> element == Type.PRIME)
|
|
|
|
.count();
|
|
|
|
int[] primes = new int[primesCount];
|
|
|
|
|
|
|
|
int primeIndex = 0;
|
2020-10-24 18:23:28 +08:00
|
|
|
for (int i = 0; i < n + 1; i++) {
|
2021-10-28 03:01:53 +08:00
|
|
|
if(numbers[i] == Type.PRIME) {
|
|
|
|
primes[primeIndex++] = i;
|
2020-10-24 18:23:28 +08:00
|
|
|
}
|
2017-09-29 02:38:20 +08:00
|
|
|
}
|
|
|
|
|
2021-10-28 03:01:53 +08:00
|
|
|
return primes;
|
|
|
|
}
|
|
|
|
|
|
|
|
private enum Type {
|
|
|
|
PRIME, NOT_PRIME
|
2020-10-24 18:23:28 +08:00
|
|
|
}
|
2017-09-29 02:38:20 +08:00
|
|
|
|
2020-10-24 18:23:28 +08:00
|
|
|
public static void main(String[] args) {
|
|
|
|
int n = 100;
|
2021-10-28 03:01:53 +08:00
|
|
|
System.out.println("Searching for all primes from zero to " + n);
|
|
|
|
int[] primes = findPrimesTill(n);
|
|
|
|
System.out.println("Found: " + Arrays.toString(primes));
|
2020-10-24 18:23:28 +08:00
|
|
|
}
|
2017-09-29 02:38:20 +08:00
|
|
|
}
|