JavaAlgorithms/Searches/FibonacciSearch.java

72 lines
2.2 KiB
Java
Raw Normal View History

2021-10-25 13:28:58 +08:00
package Searches;
/*
* Fibonacci Search is a popular algorithm which finds the position of a target value in
* a sorted array
*
* The time complexity for this search algorithm is O(log3(n))
* The space complexity for this search algorithm is O(1)
* @author Kanakalatha Vemuru (https://github.com/KanakalathaVemuru)
*/
public class FibonacciSearch implements SearchAlgorithm {
/**
* @param array is a sorted array where the element has to be searched
* @param key is an element whose position has to be found
* @param <T> is any comparable type
* @return index of the element
*/
@Override
public <T extends Comparable<T>> int find(T[] array, T key) {
int fibMinus1 = 1;
int fibMinus2 = 0;
int fibNumber = fibMinus1 + fibMinus2;
int n = array.length;
while (fibNumber < n) {
fibMinus2 = fibMinus1;
fibMinus1 = fibNumber;
fibNumber = fibMinus2 + fibMinus1;
}
int offset = -1;
while (fibNumber > 1) {
int i = Math.min(offset + fibMinus2, n - 1);
if (array[i].compareTo(key) < 0) {
fibNumber = fibMinus1;
fibMinus1 = fibMinus2;
fibMinus2 = fibNumber - fibMinus1;
offset = i;
}
else if (array[i].compareTo(key) > 0) {
fibNumber = fibMinus2;
fibMinus1 = fibMinus1 - fibMinus2;
fibMinus2 = fibNumber - fibMinus1;
}
else {
return i;
}
}
if (fibMinus1 == 1 && array[offset + 1] == key) {
return offset + 1;
}
return -1;
}
// Driver Program
public static void main(String[] args) {
Integer[] integers = {1, 2, 4, 8, 16, 32, 64, 128, 256, 512};
int size = integers.length;
Integer shouldBeFound = 128;
FibonacciSearch fsearch = new FibonacciSearch();
int atIndex = fsearch.find(integers, shouldBeFound);
System.out.println(
"Should be found: " + shouldBeFound + ". Found "+ integers[atIndex] + " at index "+ atIndex +". An array length " + size);
}
}