JavaAlgorithms/DataStructures/Trees/BinaryTree.java

302 lines
7.9 KiB
Java
Raw Normal View History

package DataStructures.Trees;
import java.util.Queue;
import java.util.LinkedList;
/**
2020-10-24 18:23:28 +08:00
* This entire class is used to build a Binary Tree data structure. There is the Node Class and the
* Tree Class, both explained below.
*/
/**
2020-10-24 18:23:28 +08:00
* A binary tree is a data structure in which an element has two successors(children). The left
* child is usually smaller than the parent, and the right child is usually bigger.
*
* @author Unknown
*/
public class BinaryTree {
2020-10-24 18:23:28 +08:00
/**
* This class implements the nodes that will go on the Binary Tree. They consist of the data in
* them, the node to the left, the node to the right, and the parent from which they came from.
*
* @author Unknown
*/
static class Node {
2020-10-24 18:23:28 +08:00
/** Data for the node */
public int data;
/** The Node to the left of this one */
public Node left;
/** The Node to the right of this one */
public Node right;
/** The parent of this node */
public Node parent;
/**
2020-10-24 18:23:28 +08:00
* Constructor of Node
*
2020-10-24 18:23:28 +08:00
* @param value Value to put in the node
*/
2020-10-24 18:23:28 +08:00
public Node(int value) {
data = value;
left = null;
right = null;
parent = null;
}
2020-10-24 18:23:28 +08:00
}
2020-10-24 18:23:28 +08:00
/** The root of the Binary Tree */
private Node root;
2020-10-24 18:23:28 +08:00
/** Constructor */
public BinaryTree() {
root = null;
}
/** Parameterized Constructor */
public BinaryTree(Node root) {
this.root = root;
}
2020-10-24 18:23:28 +08:00
/**
* Method to find a Node with a certain value
*
* @param key Value being looked for
* @return The node if it finds it, otherwise returns the parent
*/
public Node find(int key) {
Node current = root;
while (current != null) {
if (key < current.data) {
if (current.left == null) return current; // The key isn't exist, returns the parent
current = current.left;
} else if (key > current.data) {
if (current.right == null) return current;
current = current.right;
} else { // If you find the value return it
return current;
}
}
2020-10-24 18:23:28 +08:00
return null;
}
2020-10-24 18:23:28 +08:00
/**
* Inserts certain value into the Binary Tree
*
* @param value Value to be inserted
*/
public void put(int value) {
Node newNode = new Node(value);
if (root == null) root = newNode;
else {
// This will return the soon to be parent of the value you're inserting
Node parent = find(value);
2020-10-24 18:23:28 +08:00
// This if/else assigns the new node to be either the left or right child of the parent
if (value < parent.data) {
parent.left = newNode;
parent.left.parent = parent;
return;
} else {
parent.right = newNode;
parent.right.parent = parent;
return;
}
}
2020-10-24 18:23:28 +08:00
}
2020-10-24 18:23:28 +08:00
/**
* Deletes a given value from the Binary Tree
*
* @param value Value to be deleted
* @return If the value was deleted
*/
public boolean remove(int value) {
// temp is the node to be deleted
Node temp = find(value);
2020-10-24 18:23:28 +08:00
// If the value doesn't exist
if (temp.data != value) return false;
2020-10-24 18:23:28 +08:00
// No children
if (temp.right == null && temp.left == null) {
if (temp == root) root = null;
2020-10-24 18:23:28 +08:00
// This if/else assigns the new node to be either the left or right child of the parent
else if (temp.parent.data < temp.data) temp.parent.right = null;
else temp.parent.left = null;
return true;
}
2020-10-24 18:23:28 +08:00
// Two children
else if (temp.left != null && temp.right != null) {
Node successor = findSuccessor(temp);
2020-10-24 18:23:28 +08:00
// The left tree of temp is made the left tree of the successor
successor.left = temp.left;
successor.left.parent = successor;
2020-10-24 18:23:28 +08:00
// If the successor has a right child, the child's grandparent is it's new parent
if (successor.parent != temp) {
if (successor.right != null) {
successor.right.parent = successor.parent;
successor.parent.left = successor.right;
successor.right = temp.right;
successor.right.parent = successor;
} else {
successor.parent.left = null;
successor.right = temp.right;
successor.right.parent = successor;
}
}
2020-01-26 14:15:18 +08:00
2020-10-24 18:23:28 +08:00
if (temp == root) {
successor.parent = null;
root = successor;
return true;
}
2020-10-24 18:23:28 +08:00
// If you're not deleting the root
else {
successor.parent = temp.parent;
2020-10-24 18:23:28 +08:00
// This if/else assigns the new node to be either the left or right child of the parent
if (temp.parent.data < temp.data) temp.parent.right = successor;
else temp.parent.left = successor;
return true;
}
}
// One child
else {
// If it has a right child
if (temp.right != null) {
if (temp == root) {
root = temp.right;
return true;
}
2020-10-24 18:23:28 +08:00
temp.right.parent = temp.parent;
2020-10-24 18:23:28 +08:00
// Assigns temp to left or right child
if (temp.data < temp.parent.data) temp.parent.left = temp.right;
else temp.parent.right = temp.right;
return true;
}
// If it has a left child
else {
if (temp == root) {
root = temp.left;
return true;
}
2020-10-24 18:23:28 +08:00
temp.left.parent = temp.parent;
2020-10-24 18:23:28 +08:00
// Assigns temp to left or right side
if (temp.data < temp.parent.data) temp.parent.left = temp.left;
else temp.parent.right = temp.left;
return true;
}
}
2020-10-24 18:23:28 +08:00
}
2020-10-24 18:23:28 +08:00
/**
* This method finds the Successor to the Node given. Move right once and go left down the tree as
* far as you can
*
* @param n Node that you want to find the Successor of
* @return The Successor of the node
*/
public Node findSuccessor(Node n) {
if (n.right == null) return n;
Node current = n.right;
Node parent = n.right;
while (current != null) {
parent = current;
current = current.left;
}
2020-10-24 18:23:28 +08:00
return parent;
}
2020-10-24 18:23:28 +08:00
/**
* Returns the root of the Binary Tree
*
* @return the root of the Binary Tree
*/
public Node getRoot() {
return root;
}
2020-10-24 18:23:28 +08:00
/**
* Prints leftChild - root - rightChild
* This is the equivalent of a depth first search
2020-10-24 18:23:28 +08:00
*
* @param localRoot The local root of the binary tree
*/
public void inOrder(Node localRoot) {
if (localRoot != null) {
inOrder(localRoot.left);
System.out.print(localRoot.data + " ");
inOrder(localRoot.right);
}
2020-10-24 18:23:28 +08:00
}
2020-10-24 18:23:28 +08:00
/**
* Prints root - leftChild - rightChild
*
* @param localRoot The local root of the binary tree
*/
public void preOrder(Node localRoot) {
if (localRoot != null) {
System.out.print(localRoot.data + " ");
preOrder(localRoot.left);
preOrder(localRoot.right);
}
2020-10-24 18:23:28 +08:00
}
2020-10-24 18:23:28 +08:00
/**
* Prints rightChild - leftChild - root
*
* @param localRoot The local root of the binary tree
*/
public void postOrder(Node localRoot) {
if (localRoot != null) {
postOrder(localRoot.left);
postOrder(localRoot.right);
System.out.print(localRoot.data + " ");
}
2020-10-24 18:23:28 +08:00
}
/**
* Prints the tree in a breadth first search order
* This is similar to pre-order traversal, but instead of being
* implemented with a stack (or recursion), it is implemented
* with a queue
*
* @param localRoot The local root of the binary tree
*/
public void bfs(Node localRoot) {
// Create a queue for the order of the nodes
Queue<Node> queue = new LinkedList<Node>();
// If the give root is null, then we don't add to the queue
// and won't do anything
if (localRoot != null)
queue.add(localRoot);
// Continue until the queue is empty
while (! queue.isEmpty()) {
// Get the next node on the queue to visit
localRoot = queue.remove();
// Print the data from the node we are visiting
System.out.print(localRoot.data + " ");
// Add the children to the queue if not null
if (localRoot.right != null)
queue.add(localRoot.right);
if (localRoot.left != null)
queue.add(localRoot.left);
}
}
}