81 lines
2.6 KiB
Java
81 lines
2.6 KiB
Java
|
package DataStructures.Trees;
|
||
|
|
||
|
public class SegmentTree {
|
||
|
private int seg_t[];
|
||
|
private int n;
|
||
|
private int arr[];
|
||
|
|
||
|
/* Constructor which takes the size of the array and the array as a parameter*/
|
||
|
public SegmentTree(int n, int arr[]) {
|
||
|
this.n = n;
|
||
|
int x = (int) (Math.ceil(Math.log(n) / Math.log(2)));
|
||
|
int seg_size = 2 * (int) Math.pow(2, x) - 1;
|
||
|
|
||
|
this.seg_t = new int[seg_size];
|
||
|
this.arr = arr;
|
||
|
this.n = n;
|
||
|
constructTree(arr, 0, n - 1, 0);
|
||
|
}
|
||
|
|
||
|
/* A function which will create the segment tree*/
|
||
|
public int constructTree(int[] arr, int start, int end, int index) {
|
||
|
if (start == end) {
|
||
|
this.seg_t[index] = arr[start];
|
||
|
return arr[start];
|
||
|
}
|
||
|
|
||
|
int mid = start + (end - start) / 2;
|
||
|
this.seg_t[index] = constructTree(arr, start, mid, index*2 + 1) +
|
||
|
constructTree(arr, mid + 1, end, index*2 + 2);
|
||
|
return this.seg_t[index];
|
||
|
}
|
||
|
|
||
|
|
||
|
/* A function which will update the value at a index i. This will be called by the
|
||
|
update function internally*/
|
||
|
private void updateTree(int start, int end, int index, int diff, int seg_index) {
|
||
|
if (index < start || index > end) {
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
this.seg_t[seg_index] += diff;
|
||
|
if (start != end) {
|
||
|
int mid = start + (end - start) / 2;
|
||
|
updateTree(start, mid, index, diff, seg_index*2 + 1);
|
||
|
updateTree(mid + 1, end, index, diff, seg_index*2 + 2);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* A function to update the value at a particular index*/
|
||
|
public void update(int index, int value) {
|
||
|
if (index < 0 || index > n) {
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
int diff = value - arr[index];
|
||
|
arr[index] = value;
|
||
|
updateTree(0, n - 1, index, diff, 0);
|
||
|
}
|
||
|
|
||
|
/* A function to get the sum of the elements from index l to index r. This will be called internally*/
|
||
|
private int getSumTree(int start, int end, int q_start, int q_end, int seg_index) {
|
||
|
if (q_start <= start && q_end >= end) {
|
||
|
return this.seg_t[seg_index];
|
||
|
}
|
||
|
|
||
|
if (q_start > end || q_end < start) {
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
int mid = start + (end - start)/2;
|
||
|
return getSumTree(start, mid, q_start, q_end, seg_index*2 + 1) + getSumTree(mid + 1, end, q_start, q_end, seg_index*2 + 2);
|
||
|
}
|
||
|
|
||
|
/* A function to query the sum of the subarray [start...end]*/
|
||
|
public int getSum(int start, int end) {
|
||
|
if (start < 0 || end > n || start > end) {
|
||
|
return 0;
|
||
|
}
|
||
|
return getSumTree(0, n-1, start, end, 0);
|
||
|
}
|
||
|
}
|