2020-09-21 05:23:40 +08:00
|
|
|
package DynamicProgramming;
|
|
|
|
|
|
|
|
public class SubsetSum {
|
|
|
|
|
2020-10-24 18:23:28 +08:00
|
|
|
/** Driver Code */
|
|
|
|
public static void main(String[] args) {
|
|
|
|
int[] arr = new int[] {50, 4, 10, 15, 34};
|
|
|
|
assert subsetSum(arr, 64); /* 4 + 10 + 15 + 34 = 64 */
|
|
|
|
assert subsetSum(arr, 99); /* 50 + 15 + 34 = 99 */
|
|
|
|
assert !subsetSum(arr, 5);
|
|
|
|
assert !subsetSum(arr, 66);
|
|
|
|
}
|
2020-09-21 05:23:40 +08:00
|
|
|
|
2020-10-24 18:23:28 +08:00
|
|
|
/**
|
|
|
|
* Test if a set of integers contains a subset that sum to a given integer.
|
|
|
|
*
|
|
|
|
* @param arr the array contains integers.
|
|
|
|
* @param sum target sum of subset.
|
|
|
|
* @return {@code true} if subset exists, otherwise {@code false}.
|
|
|
|
*/
|
|
|
|
private static boolean subsetSum(int[] arr, int sum) {
|
|
|
|
int n = arr.length;
|
|
|
|
boolean[][] isSum = new boolean[n + 2][sum + 1];
|
2020-09-21 05:23:40 +08:00
|
|
|
|
2020-10-24 18:23:28 +08:00
|
|
|
isSum[n + 1][0] = true;
|
|
|
|
for (int i = 1; i <= sum; i++) {
|
|
|
|
isSum[n + 1][i] = false;
|
|
|
|
}
|
2020-09-21 05:23:40 +08:00
|
|
|
|
2020-10-24 18:23:28 +08:00
|
|
|
for (int i = n; i > 0; i--) {
|
|
|
|
isSum[i][0] = true;
|
|
|
|
for (int j = 1; j <= arr[i - 1] - 1; j++) {
|
|
|
|
if (j <= sum) {
|
|
|
|
isSum[i][j] = isSum[i + 1][j];
|
2020-09-21 05:23:40 +08:00
|
|
|
}
|
2020-10-24 18:23:28 +08:00
|
|
|
}
|
|
|
|
for (int j = arr[i - 1]; j <= sum; j++) {
|
|
|
|
isSum[i][j] = (isSum[i + 1][j] || isSum[i + 1][j - arr[i - 1]]);
|
|
|
|
}
|
2020-09-21 05:23:40 +08:00
|
|
|
}
|
2020-10-24 18:23:28 +08:00
|
|
|
|
|
|
|
return isSum[1][sum];
|
|
|
|
}
|
|
|
|
}
|