JavaAlgorithms/DynamicProgramming/KnapsackMemoization.java

54 lines
1.5 KiB
Java
Raw Normal View History

package DynamicProgramming;
import java.util.Arrays;
/**
* Recursive Solution for 0-1 knapsack with memoization
*/
public class KnapsackMemoization {
private static int[][] t;
// Returns the maximum value that can
// be put in a knapsack of capacity W
public static int knapsack(int[] wt, int[] value, int W, int n) {
if(t[n][W] != -1) {
return t[n][W];
}
if (n == 0 || W == 0) {
return 0;
}
if (wt[n - 1] <= W) {
t[n-1][W-wt[n-1]] = knapsack(wt, value, W - wt[n - 1], n - 1);
// Include item in the bag. In that case add the value of the item and call for the remaining items
int tmp1 = value[n - 1] + t[n-1][W-wt[n-1]];
// Don't include the nth item in the bag anl call for remaining item without reducing the weight
int tmp2 = knapsack(wt, value, W, n - 1);
t[n-1][W] = tmp2;
// include the larger one
int tmp = tmp1 > tmp2 ? tmp1 : tmp2;
t[n][W] = tmp;
return tmp;
// If Weight for the item is more than the desired weight then don't include it
// Call for rest of the n-1 items
} else if (wt[n - 1] > W) {
t[n][W] = knapsack(wt, value, W, n - 1);
return t[n][W];
}
return -1;
}
// Driver code
public static void main(String args[]) {
int[] wt = {1, 3, 4, 5};
int[] value = {1, 4, 5, 7};
int W = 10;
t = new int[wt.length+1][W+1];
Arrays.stream(t).forEach(a -> Arrays.fill(a, -1));
int res = knapsack(wt, value, W, wt.length);
System.out.println("Maximum knapsack value " + res);
}
}