175 lines
5.0 KiB
Java
175 lines
5.0 KiB
Java
|
// Java program for Kruskal's algorithm to find Minimum Spanning Tree
|
||
|
// of a given connected, undirected and weighted graph
|
||
|
import java.util.*;
|
||
|
import java.lang.*;
|
||
|
import java.io.*;
|
||
|
|
||
|
class Graph
|
||
|
{
|
||
|
// A class to represent a graph edge
|
||
|
class Edge implements Comparable<Edge>
|
||
|
{
|
||
|
int src, dest, weight;
|
||
|
|
||
|
// Comparator function used for sorting edges based on
|
||
|
// their weight
|
||
|
public int compareTo(Edge compareEdge)
|
||
|
{
|
||
|
return this.weight-compareEdge.weight;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
// A class to represent a subset for union-find
|
||
|
class subset
|
||
|
{
|
||
|
int parent, rank;
|
||
|
};
|
||
|
|
||
|
int V, E; // V-> no. of vertices & E->no.of edges
|
||
|
Edge edge[]; // collection of all edges
|
||
|
|
||
|
// Creates a graph with V vertices and E edges
|
||
|
Graph(int v, int e)
|
||
|
{
|
||
|
V = v;
|
||
|
E = e;
|
||
|
edge = new Edge[E];
|
||
|
for (int i=0; i<e; ++i)
|
||
|
edge[i] = new Edge();
|
||
|
}
|
||
|
|
||
|
// A utility function to find set of an element i
|
||
|
// (uses path compression technique)
|
||
|
int find(subset subsets[], int i)
|
||
|
{
|
||
|
// find root and make root as parent of i (path compression)
|
||
|
if (subsets[i].parent != i)
|
||
|
subsets[i].parent = find(subsets, subsets[i].parent);
|
||
|
|
||
|
return subsets[i].parent;
|
||
|
}
|
||
|
|
||
|
// A function that does union of two sets of x and y
|
||
|
// (uses union by rank)
|
||
|
void Union(subset subsets[], int x, int y)
|
||
|
{
|
||
|
int xroot = find(subsets, x);
|
||
|
int yroot = find(subsets, y);
|
||
|
|
||
|
// Attach smaller rank tree under root of high rank tree
|
||
|
// (Union by Rank)
|
||
|
if (subsets[xroot].rank < subsets[yroot].rank)
|
||
|
subsets[xroot].parent = yroot;
|
||
|
else if (subsets[xroot].rank > subsets[yroot].rank)
|
||
|
subsets[yroot].parent = xroot;
|
||
|
|
||
|
// If ranks are same, then make one as root and increment
|
||
|
// its rank by one
|
||
|
else
|
||
|
{
|
||
|
subsets[yroot].parent = xroot;
|
||
|
subsets[xroot].rank++;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// The main function to construct MST using Kruskal's algorithm
|
||
|
void KruskalMST()
|
||
|
{
|
||
|
Edge result[] = new Edge[V]; // Tnis will store the resultant MST
|
||
|
int e = 0; // An index variable, used for result[]
|
||
|
int i = 0; // An index variable, used for sorted edges
|
||
|
for (i=0; i<V; ++i)
|
||
|
result[i] = new Edge();
|
||
|
|
||
|
// Step 1: Sort all the edges in non-decreasing order of their
|
||
|
// weight. If we are not allowed to change the given graph, we
|
||
|
// can create a copy of array of edges
|
||
|
Arrays.sort(edge);
|
||
|
|
||
|
// Allocate memory for creating V ssubsets
|
||
|
subset subsets[] = new subset[V];
|
||
|
for(i=0; i<V; ++i)
|
||
|
subsets[i]=new subset();
|
||
|
|
||
|
// Create V subsets with single elements
|
||
|
for (int v = 0; v < V; ++v)
|
||
|
{
|
||
|
subsets[v].parent = v;
|
||
|
subsets[v].rank = 0;
|
||
|
}
|
||
|
|
||
|
i = 0; // Index used to pick next edge
|
||
|
|
||
|
// Number of edges to be taken is equal to V-1
|
||
|
while (e < V - 1)
|
||
|
{
|
||
|
// Step 2: Pick the smallest edge. And increment the index
|
||
|
// for next iteration
|
||
|
Edge next_edge = new Edge();
|
||
|
next_edge = edge[i++];
|
||
|
|
||
|
int x = find(subsets, next_edge.src);
|
||
|
int y = find(subsets, next_edge.dest);
|
||
|
|
||
|
// If including this edge does't cause cycle, include it
|
||
|
// in result and increment the index of result for next edge
|
||
|
if (x != y)
|
||
|
{
|
||
|
result[e++] = next_edge;
|
||
|
Union(subsets, x, y);
|
||
|
}
|
||
|
// Else discard the next_edge
|
||
|
}
|
||
|
|
||
|
// print the contents of result[] to display the built MST
|
||
|
System.out.println("Following are the edges in the constructed MST");
|
||
|
for (i = 0; i < e; ++i)
|
||
|
System.out.println(result[i].src+" -- "+result[i].dest+" == "+
|
||
|
result[i].weight);
|
||
|
}
|
||
|
|
||
|
// Driver Program
|
||
|
public static void main (String[] args)
|
||
|
{
|
||
|
|
||
|
/* Let us create following weighted graph
|
||
|
10
|
||
|
0--------1
|
||
|
| \ |
|
||
|
6| 5\ |15
|
||
|
| \ |
|
||
|
2--------3
|
||
|
4 */
|
||
|
int V = 4; // Number of vertices in graph
|
||
|
int E = 5; // Number of edges in graph
|
||
|
Graph graph = new Graph(V, E);
|
||
|
|
||
|
// add edge 0-1
|
||
|
graph.edge[0].src = 0;
|
||
|
graph.edge[0].dest = 1;
|
||
|
graph.edge[0].weight = 10;
|
||
|
|
||
|
// add edge 0-2
|
||
|
graph.edge[1].src = 0;
|
||
|
graph.edge[1].dest = 2;
|
||
|
graph.edge[1].weight = 6;
|
||
|
|
||
|
// add edge 0-3
|
||
|
graph.edge[2].src = 0;
|
||
|
graph.edge[2].dest = 3;
|
||
|
graph.edge[2].weight = 5;
|
||
|
|
||
|
// add edge 1-3
|
||
|
graph.edge[3].src = 1;
|
||
|
graph.edge[3].dest = 3;
|
||
|
graph.edge[3].weight = 15;
|
||
|
|
||
|
// add edge 2-3
|
||
|
graph.edge[4].src = 2;
|
||
|
graph.edge[4].dest = 3;
|
||
|
graph.edge[4].weight = 4;
|
||
|
|
||
|
graph.KruskalMST();
|
||
|
}
|
||
|
}
|