Formatted with Google Java Formatter

This commit is contained in:
github-actions 2021-06-03 14:53:53 +00:00
parent 6cb034b07f
commit 0fd737e555

View File

@ -3,160 +3,170 @@ package strings;
import java.util.HashMap; import java.util.HashMap;
/** /**
* This class is not thread safe<br><br> * This class is not thread safe<br>
* (From wikipedia) * <br>
* In computer science, the BoyerMooreHorspool algorithm or Horspool's algorithm is an algorithm for finding * (From wikipedia) In computer science, the BoyerMooreHorspool algorithm or Horspool's algorithm
* substrings in strings. It was published by Nigel Horspool in 1980. <br> * is an algorithm for finding substrings in strings. It was published by Nigel Horspool in 1980.
* <a href=https://en.wikipedia.org/wiki/Boyer%E2%80%93Moore%E2%80%93Horspool_algorithm>Wikipedia page</a><br><br> * <br>
* <p> * <a href=https://en.wikipedia.org/wiki/Boyer%E2%80%93Moore%E2%80%93Horspool_algorithm>Wikipedia
* An explanation:<br> * page</a><br>
* <p> * <br>
* The Horspool algorithm is a simplification of the Boyer-Moore algorithm in that it uses only one of the two heuristic *
* methods for increasing the number of characters shifted when finding a bad match in the text. This method is usually * <p>An explanation:<br>
* called the "bad symbol" or "bad character" shift. The bad symbol shift method is classified as an input enhancement *
* method in the theory of algorithms. Input enhancement is (from wikipedia) the principle that processing a given input * <p>The Horspool algorithm is a simplification of the Boyer-Moore algorithm in that it uses only
* to a problem and altering it in a specific way will increase runtime efficiency or space efficiency, or both. Both * one of the two heuristic methods for increasing the number of characters shifted when finding a
* algorithms try to match the pattern and text comparing the pattern symbols to the text's from right to left.<br><br> * bad match in the text. This method is usually called the "bad symbol" or "bad character" shift.
* <p> * The bad symbol shift method is classified as an input enhancement method in the theory of
* In the bad symbol shift method, a table is created prior to the search, called the "bad symbol table". The bad symbol * algorithms. Input enhancement is (from wikipedia) the principle that processing a given input to
* table contains the shift values for any symbol in the text and pattern. For these symbols, the value is the length of * a problem and altering it in a specific way will increase runtime efficiency or space efficiency,
* the pattern, if the symbol is not in the first (length - 1) of the pattern. Else it is the distance from its * or both. Both algorithms try to match the pattern and text comparing the pattern symbols to the
* rightmost occurrence in the pattern to the last symbol of the pattern. In practice, we only calculate the values for * text's from right to left.<br>
* the ones that exist in the first (length - 1) of the pattern.<br><br> * <br>
* <p> *
* For more details on the algorithm and the more advanced Boyer-Moore I recommend checking out the wikipedia page and * <p>In the bad symbol shift method, a table is created prior to the search, called the "bad symbol
* professor Anany Levitin's book: Introduction To The Design And Analysis Of Algorithms. * table". The bad symbol table contains the shift values for any symbol in the text and pattern.
* </p> * For these symbols, the value is the length of the pattern, if the symbol is not in the first
* (length - 1) of the pattern. Else it is the distance from its rightmost occurrence in the pattern
* to the last symbol of the pattern. In practice, we only calculate the values for the ones that
* exist in the first (length - 1) of the pattern.<br>
* <br>
*
* <p>For more details on the algorithm and the more advanced Boyer-Moore I recommend checking out
* the wikipedia page and professor Anany Levitin's book: Introduction To The Design And Analysis Of
* Algorithms.
*/ */
public class HorspoolSearch { public class HorspoolSearch {
private static HashMap<Character, Integer> shiftValues; // bad symbol table private static HashMap<Character, Integer> shiftValues; // bad symbol table
private static Integer patternLength; private static Integer patternLength;
private static int comparisons = 0; // total comparisons in the current/last search private static int comparisons = 0; // total comparisons in the current/last search
/** /**
* Case sensitive version version of the algorithm * Case sensitive version version of the algorithm
* *
* @param pattern the pattern to be searched for (needle) * @param pattern the pattern to be searched for (needle)
* @param text the text being searched in (haystack) * @param text the text being searched in (haystack)
* @return -1 if not found or first index of the pattern in the text * @return -1 if not found or first index of the pattern in the text
*/ */
public static int findFirst(String pattern, String text) { public static int findFirst(String pattern, String text) {
return firstOccurrence(pattern, text, true); return firstOccurrence(pattern, text, true);
} }
/** /**
* Case insensitive version version of the algorithm * Case insensitive version version of the algorithm
* *
* @param pattern the pattern to be searched for (needle) * @param pattern the pattern to be searched for (needle)
* @param text the text being searched in (haystack) * @param text the text being searched in (haystack)
* @return -1 if not found or first index of the pattern in the text * @return -1 if not found or first index of the pattern in the text
*/ */
public static int findFirstInsensitive(String pattern, String text) { public static int findFirstInsensitive(String pattern, String text) {
return firstOccurrence(pattern, text, false); return firstOccurrence(pattern, text, false);
} }
/** /**
* Utility method that returns comparisons made by last run (mainly for tests) * Utility method that returns comparisons made by last run (mainly for tests)
* *
* @return number of character comparisons of the last search * @return number of character comparisons of the last search
*/ */
public static Integer getLastComparisons() { public static Integer getLastComparisons() {
return HorspoolSearch.comparisons; return HorspoolSearch.comparisons;
} }
/** /**
* Fairly standard implementation of the Horspool algorithm. Only the index of the last character of the pattern on the * Fairly standard implementation of the Horspool algorithm. Only the index of the last character
* text is saved and shifted by the appropriate amount when a mismatch is found. The algorithm stops at the first * of the pattern on the text is saved and shifted by the appropriate amount when a mismatch is
* match or when the entire text has been exhausted. * found. The algorithm stops at the first match or when the entire text has been exhausted.
* *
* @param pattern String to be matched in the text * @param pattern String to be matched in the text
* @param text text String * @param text text String
* @return index of first occurrence of the pattern in the text * @return index of first occurrence of the pattern in the text
*/ */
private static int firstOccurrence(String pattern, String text, boolean caseSensitive) { private static int firstOccurrence(String pattern, String text, boolean caseSensitive) {
shiftValues = calcShiftValues(pattern); // build the bad symbol table shiftValues = calcShiftValues(pattern); // build the bad symbol table
comparisons = 0; // reset comparisons comparisons = 0; // reset comparisons
int textIndex = pattern.length() - 1; // align pattern with text start and get index of the last character int textIndex =
pattern.length() - 1; // align pattern with text start and get index of the last character
// while pattern is not out of text bounds // while pattern is not out of text bounds
while (textIndex < text.length()) { while (textIndex < text.length()) {
// try to match pattern with current part of the text starting from last character // try to match pattern with current part of the text starting from last character
int i = pattern.length() - 1; int i = pattern.length() - 1;
while (i >= 0) { while (i >= 0) {
comparisons++; comparisons++;
char patternChar = pattern.charAt(i); char patternChar = pattern.charAt(i);
char textChar = text.charAt( char textChar = text.charAt((textIndex + i) - (pattern.length() - 1));
(textIndex + i) - (pattern.length() - 1) if (!charEquals(patternChar, textChar, caseSensitive)) { // bad character, shift pattern
); textIndex += getShiftValue(text.charAt(textIndex));
if (!charEquals(patternChar, textChar, caseSensitive)) { // bad character, shift pattern break;
textIndex += getShiftValue(text.charAt(textIndex));
break;
}
i--;
}
// check for full match
if (i == -1) {
return textIndex - pattern.length() + 1;
}
} }
i--;
}
// text exhausted, return failure // check for full match
return -1; if (i == -1) {
return textIndex - pattern.length() + 1;
}
} }
/** // text exhausted, return failure
* Compares the argument characters return -1;
* }
* @param c1 first character
* @param c2 second character /**
* @param caseSensitive boolean determining case sensitivity of comparison * Compares the argument characters
* @return truth value of the equality comparison *
*/ * @param c1 first character
private static boolean charEquals(char c1, char c2, boolean caseSensitive) { * @param c2 second character
if (caseSensitive) { * @param caseSensitive boolean determining case sensitivity of comparison
return c1 == c2; * @return truth value of the equality comparison
} */
return Character.toLowerCase(c1) == Character.toLowerCase(c2); private static boolean charEquals(char c1, char c2, boolean caseSensitive) {
if (caseSensitive) {
return c1 == c2;
}
return Character.toLowerCase(c1) == Character.toLowerCase(c2);
}
/**
* Builds the bad symbol table required to run the algorithm. The method starts from the second to
* last character of the pattern and moves to the left. When it meets a new character, it is by
* definition its rightmost occurrence and therefore puts the distance from the current index to
* the index of the last character into the table. If the character is already in the table, then
* it is not a rightmost occurrence, so it continues.
*
* @param pattern basis for the bad symbol table
* @return the bad symbol table
*/
private static HashMap<Character, Integer> calcShiftValues(String pattern) {
patternLength = pattern.length();
HashMap<Character, Integer> table = new HashMap<>();
for (int i = pattern.length() - 2;
i >= 0;
i--) { // length - 2 is the index of the second to last character
char c = pattern.charAt(i);
int finalI = i;
table.computeIfAbsent(c, k -> pattern.length() - 1 - finalI);
} }
/** return table;
* Builds the bad symbol table required to run the algorithm. The method starts from the second to last character }
* of the pattern and moves to the left. When it meets a new character, it is by definition its rightmost occurrence
* and therefore puts the distance from the current index to the index of the last character into the table. If the
* character is already in the table, then it is not a rightmost occurrence, so it continues.
*
* @param pattern basis for the bad symbol table
* @return the bad symbol table
*/
private static HashMap<Character, Integer> calcShiftValues(String pattern) {
patternLength = pattern.length();
HashMap<Character, Integer> table = new HashMap<>();
for (int i = pattern.length() - 2; i >= 0; i--) { // length - 2 is the index of the second to last character /**
char c = pattern.charAt(i); * Helper function that uses the bad symbol shift table to return the appropriate shift value for
int finalI = i; * a given character
table.computeIfAbsent(c, k -> pattern.length() - 1 - finalI); *
} * @param c character
* @return shift value that corresponds to the character argument
return table; */
private static Integer getShiftValue(char c) {
if (shiftValues.get(c) != null) {
return shiftValues.get(c);
} else {
return patternLength;
} }
}
/**
* Helper function that uses the bad symbol shift table to return the appropriate shift value for a given character
*
* @param c character
* @return shift value that corresponds to the character argument
*/
private static Integer getShiftValue(char c) {
if (shiftValues.get(c) != null) {
return shiftValues.get(c);
} else {
return patternLength;
}
}
} }