Update BinarySearch (#4747)

This commit is contained in:
D.Sunil 2023-10-13 01:43:32 +05:30 committed by GitHub
parent e9bbf35ff9
commit 1dc64b1685
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 87 additions and 18 deletions

View File

@ -1,28 +1,54 @@
package com.thealgorithms.searches; package com.thealgorithms.searches;
class PerfectBinarySearch { import com.thealgorithms.devutils.searches.SearchAlgorithm;
static int binarySearch(int[] arr, int target) { /**
int low = 0; * Binary search is one of the most popular algorithms The algorithm finds the
int high = arr.length - 1; * position of a target value within a sorted array
*
* <p>
* Worst-case performance O(log n) Best-case performance O(1) Average
* performance O(log n) Worst-case space complexity O(1)
*
* @author D Sunil (https://github.com/sunilnitdgp)
* @see SearchAlgorithm
*/
while (low <= high) { public class PerfectBinarySearch<T> implements SearchAlgorithm {
int mid = (low + high) / 2;
if (arr[mid] == target) { /**
return mid; * @param array is an array where the element should be found
} else if (arr[mid] > target) { * @param key is an element which should be found
high = mid - 1; * @param <T> is any comparable type
* @return index of the element
*/
@Override
public <T extends Comparable<T>> int find(T[] array, T key) {
return search(array, key, 0, array.length - 1);
}
/**
* This method implements the Generic Binary Search iteratively.
*
* @param array The array to make the binary search
* @param key The number you are looking for
* @return the location of the key, or -1 if not found
*/
private static <T extends Comparable<T>> int search(T[] array, T key, int left, int right) {
while (left <= right) {
int median = (left + right) >>> 1;
int comp = key.compareTo(array[median]);
if (comp == 0) {
return median; // Key found
}
if (comp < 0) {
right = median - 1; // Adjust the right bound
} else { } else {
low = mid + 1; left = median + 1; // Adjust the left bound
} }
} }
return -1; return -1; // Key not found
}
public static void main(String[] args) {
int[] array = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
assert PerfectBinarySearch.binarySearch(array, -1) == -1;
assert PerfectBinarySearch.binarySearch(array, 11) == -1;
} }
} }

View File

@ -0,0 +1,43 @@
import static org.junit.jupiter.api.Assertions.*;
import com.thealgorithms.searches.PerfectBinarySearch;
import org.junit.jupiter.api.Test;
/**
* @author D Sunil (https://github.com/sunilnitdgp)
* @see PerfectBinarySearch
*/
public class PerfectBinarySearchTest {
@Test
public void testIntegerBinarySearch() {
Integer[] array = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
PerfectBinarySearch<Integer> binarySearch = new PerfectBinarySearch<>();
// Test cases for elements present in the array
assertEquals(0, binarySearch.find(array, 1)); // First element
assertEquals(4, binarySearch.find(array, 5)); // Middle element
assertEquals(9, binarySearch.find(array, 10)); // Last element
assertEquals(6, binarySearch.find(array, 7)); // Element in the middle
// Test cases for elements not in the array
assertEquals(-1, binarySearch.find(array, 0)); // Element before the array
assertEquals(-1, binarySearch.find(array, 11)); // Element after the array
assertEquals(-1, binarySearch.find(array, 100)); // Element not in the array
}
@Test
public void testStringBinarySearch() {
String[] array = {"apple", "banana", "cherry", "date", "fig"};
PerfectBinarySearch<String> binarySearch = new PerfectBinarySearch<>();
// Test cases for elements not in the array
assertEquals(-1, binarySearch.find(array, "apricot")); // Element not in the array
assertEquals(-1, binarySearch.find(array, "bananaa")); // Element not in the array
// Test cases for elements present in the array
assertEquals(0, binarySearch.find(array, "apple")); // First element
assertEquals(2, binarySearch.find(array, "cherry")); // Middle element
assertEquals(4, binarySearch.find(array, "fig")); // Last element
}
}