# Conflicts:
#	Data Structures/HashMap/HashMap.java
#	Huffman.java
#	Misc/FloydTriangle.java
#	Misc/Huffman.java
#	Misc/InsertDeleteInArray.java
#	Misc/RootPrecision.java
#	Misc/ft.java
#	Misc/root_precision.java
#	Others/FloydTriangle.java
#	Others/Huffman.java
#	Others/insert_delete_in_array.java
#	Others/root_precision.java
#	insert_delete_in_array.java
This commit is contained in:
DESKTOP-0VAEMFL\joaom 2017-10-28 12:59:58 +01:00
commit 20d0bb2c69
58 changed files with 2697 additions and 114 deletions

View File

@ -0,0 +1,130 @@
import java.util.Arrays;
import java.util.HashSet;
import java.util.InputMismatchException;
import java.util.Scanner;
/**
* Class for converting from "any" base to "any" other base, when "any" means from 2-36.
* Works by going from base 1 to decimal to base 2. Includes auxiliary method for
* determining whether a number is valid for a given base.
*
* @author Michael Rolland
* @version 2017.10.10
*
*/
public class AnyBaseToAnyBase {
// Smallest and largest base you want to accept as valid input
static final int MINIMUM_BASE = 2;
static final int MAXIMUM_BASE = 36;
// Driver
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
String n;
int b1=0,b2=0;
while (true) {
try {
System.out.print("Enter number: ");
n = in.next();
System.out.print("Enter beginning base (between "+MINIMUM_BASE+" and "+MAXIMUM_BASE+"): ");
b1 = in.nextInt();
if (b1 > MAXIMUM_BASE || b1 < MINIMUM_BASE) {
System.out.println("Invalid base!");
continue;
}
if (!validForBase(n, b1)) {
System.out.println("The number is invalid for this base!");
continue;
}
System.out.print("Enter end base (between "+MINIMUM_BASE+" and "+MAXIMUM_BASE+"): ");
b2 = in.nextInt();
if (b2 > MAXIMUM_BASE || b2 < MINIMUM_BASE) {
System.out.println("Invalid base!");
continue;
}
break;
} catch (InputMismatchException e) {
System.out.println("Invalid input.");
in.next();
}
}
System.out.println(base2base(n, b1, b2));
}
/**
* Checks if a number (as a String) is valid for a given base.
*/
public static boolean validForBase(String n, int base) {
char[] validDigits = {'0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'A', 'B', 'C', 'D', 'E',
'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V',
'W', 'X', 'Y', 'Z'};
// digitsForBase contains all the valid digits for the base given
char[] digitsForBase = Arrays.copyOfRange(validDigits, 0, base);
// Convert character array into set for convenience of contains() method
HashSet<Character> digitsList = new HashSet();
for (int i=0; i<digitsForBase.length; i++)
digitsList.add(digitsForBase[i]);
// Check that every digit in n is within the list of valid digits for that base.
for (char c : n.toCharArray())
if (!digitsList.contains(c))
return false;
return true;
}
/**
* Method to convert any integer from base b1 to base b2. Works by converting from b1 to decimal,
* then decimal to b2.
* @param n The integer to be converted.
* @param b1 Beginning base.
* @param b2 End base.
* @return n in base b2.
*/
public static String base2base(String n, int b1, int b2) {
// Declare variables: decimal value of n,
// character of base b1, character of base b2,
// and the string that will be returned.
int decimalValue = 0, charB2;
char charB1;
String output="";
// Go through every character of n
for (int i=0; i<n.length(); i++) {
// store the character in charB1
charB1 = n.charAt(i);
// if it is a non-number, convert it to a decimal value >9 and store it in charB2
if (charB1 >= 'A' && charB1 <= 'Z')
charB2 = 10 + (charB1 - 'A');
// Else, store the integer value in charB2
else
charB2 = charB1 - '0';
// Convert the digit to decimal and add it to the
// decimalValue of n
decimalValue = decimalValue * b1 + charB2;
}
// Converting the decimal value to base b2:
// A number is converted from decimal to another base
// by continuously dividing by the base and recording
// the remainder until the quotient is zero. The number in the
// new base is the remainders, with the last remainder
// being the left-most digit.
// While the quotient is NOT zero:
while (decimalValue != 0) {
// If the remainder is a digit < 10, simply add it to
// the left side of the new number.
if (decimalValue % b2 < 10)
output = Integer.toString(decimalValue % b2) + output;
// If the remainder is >= 10, add a character with the
// corresponding value to the new number. (A = 10, B = 11, C = 12, ...)
else
output = (char)((decimalValue % b2)+55) + output;
// Divide by the new base again
decimalValue /= b2;
}
return output;
}
}

View File

@ -1,3 +1,4 @@
<<<<<<< HEAD:Data Structures/HashMap/HashMap.java
import java.util.ArrayList; import java.util.ArrayList;
@ -139,3 +140,144 @@ public class HashMap<K,V> {
} }
} }
=======
import java.util.ArrayList;
import java.util.LinkedList;
public class HashMap<K,V> {
public class hmnodes{ //HashMap nodes
K key;
V value;
}
private int size=0; //size of hashmap
private LinkedList<hmnodes> buckets[]; //array of addresses of list
public HashMap(){
buckets=new LinkedList[4]; //initially create bucket of any size
for(int i=0;i<4;i++)
buckets[i]=new LinkedList<>();
}
public void put(K key,V value) throws Exception{
int bi=bucketIndex(key); //find the index,the new key will be inserted in linklist at that index
int fountAt=find(bi,key); //check if key already exists or not
if(fountAt==-1){
hmnodes temp=new hmnodes(); //if doesn't exist create new node and insert
temp.key=key;
temp.value=value;
buckets[bi].addLast(temp);
this.size++;
}else{
buckets[bi].get(fountAt).value=value;//if already exist modify the value
}
double lambda = (this.size*1.0)/this.buckets.length;
if(lambda>2.0){
rehash(); //rehashing function which will increase the size of bucket as soon as lambda exceeds 2.0
}
return;
}
public V get(K key) throws Exception{
int bi=bucketIndex(key);
int fountAt=find(bi,key);
if(fountAt==-1){
return null;
}else{
return buckets[bi].get(fountAt).value;
}
}
public V remove(K key) throws Exception{
int bi=bucketIndex(key);
int fountAt=find(bi,key);
if(fountAt==-1){
return null;
}else{
this.size--;
return buckets[bi].remove(fountAt).value;
}
}
public boolean containskey(K key) throws Exception{
int bi=bucketIndex(key);
int fountAt=find(bi,key);
if(fountAt==-1){
return false;
}else{
return true;
}
}
public int size(){
return this.size;
}
public boolean isempty(){
return this.size==0;
}
public ArrayList<K> keyset() throws Exception{
ArrayList<K> arr=new ArrayList<>();
for(int i=0;i<buckets.length;i++){
for(int j=0;j<buckets[i].size();j++){
arr.add(buckets[i].get(j).key);
}
}
return arr;
}
public ArrayList<V> valueset() throws Exception{
ArrayList<V> arr=new ArrayList<>();
for(int i=0;i<buckets.length;i++){
for(int j=0;j<buckets[i].size();j++){
arr.add(buckets[i].get(j).value);
}
}
return arr;
}
public void display() throws Exception{
for(int i=0;i<buckets.length;i++){
System.out.print("Bucket: "+i+" ");
for(int j=0;j<buckets[i].size();j++){
hmnodes temp=buckets[i].get(j);
System.out.print("["+temp.key+"->"+temp.value+"]");
}
System.out.println();
}
}
public int find(int bi,K key) throws Exception{
for(int i=0;i<buckets[bi].size();i++){
if(key.equals(buckets[bi].get(i).key))
return i;
}
return -1;
}
public int bucketIndex(K key) throws Exception{
int bi=key.hashCode();
return Math.abs(bi%buckets.length);
}
private void rehash() throws Exception{
LinkedList<hmnodes> ob[]= buckets;
buckets=new LinkedList[ob.length*2];
for(int i=0;i<ob.length*2;i++)
buckets[i]=new LinkedList<>();
size = 0;
for(int i=0;i<ob.length;i++){
for(int j=0;j<ob[i].size();j++){
put(ob[i].get(j).key,ob[i].get(j).value);
}
}
}
}
>>>>>>> 7e3a8c55c865471a33f6932a022a1059c5243fc3:data_structures/HashMap/HashMap.java

View File

@ -7,32 +7,44 @@ public class CircleLinkedList<E>{
this.next = next; this.next = next;
} }
} }
private int size; //For better O.O design this should be private allows for better black box design //For better O.O design this should be private allows for better black box design
private Node<E> head; //this will point to dummy node; private int size;
public CircleLinkedList(){ //constructer for class.. here we will make a dummy node for circly linked list implementation with reduced error catching as our list will never be empty; //this will point to dummy node;
head = new Node<E>(null,head); //creation of the dummy node private Node<E> head;
//constructer for class.. here we will make a dummy node for circly linked list implementation with reduced error catching as our list will never be empty;
public CircleLinkedList(){
//creation of the dummy node
head = new Node<E>(null,head);
size = 0; size = 0;
} }
public int getSize(){ return size;} // getter for the size... needed because size is private. // getter for the size... needed because size is private.
public void append(E value){ // for the sake of simplistiy this class will only contain the append function or addLast other add functions can be implemented however this is the basses of them all really. public int getSize(){ return size;}
// for the sake of simplistiy this class will only contain the append function or addLast other add functions can be implemented however this is the basses of them all really.
public void append(E value){
if(value == null){ if(value == null){
throw new NullPointerException("Cannot add null element to the list"); // we do not want to add null elements to the list. // we do not want to add null elements to the list.
throw new NullPointerException("Cannot add null element to the list");
} }
head.next = new Node<E>(value,head); //head.next points to the last element; //head.next points to the last element;
head.next = new Node<E>(value,head);
size++;} size++;}
public E remove(int pos){ public E remove(int pos){
if(pos>size || pos< 0){ if(pos>size || pos< 0){
throw new IndexOutOfBoundsException("position cannot be greater than size or negative"); //catching errors //catching errors
throw new IndexOutOfBoundsException("position cannot be greater than size or negative");
} }
Node<E> iterator = head.next; Node<E> iterator = head.next;
Node<E> before = head; //we need to keep track of the element before the element we want to remove we can see why bellow. //we need to keep track of the element before the element we want to remove we can see why bellow.
Node<E> before = head;
for(int i = 1; i<=pos; i++){ for(int i = 1; i<=pos; i++){
iterator = iterator.next; iterator = iterator.next;
before = before.next; before = before.next;
} }
E saved = iterator.value; E saved = iterator.value;
before.next = iterator.next; // assigning the next referance to the the element following the element we want to remove... the last element will be assigned to the head. // assigning the next referance to the the element following the element we want to remove... the last element will be assigned to the head.
iterator.next = null; // scrubbing before.next = iterator.next;
// scrubbing
iterator.next = null;
iterator.value = null; iterator.value = null;
return saved; return saved;

View File

@ -42,7 +42,7 @@ class Stack{
top++; top++;
stackArray[top] = value; stackArray[top] = value;
}else{ }else{
System.out.println("The stack is full, can't insert value"); resize(maxSize*2);
} }
} }
@ -54,7 +54,12 @@ class Stack{
public int pop(){ public int pop(){
if(!isEmpty()){ //Checks for an empty stack if(!isEmpty()){ //Checks for an empty stack
return stackArray[top--]; return stackArray[top--];
}else{ }
if(top < maxSize/4){
resize(maxSize/2);
}
else{
System.out.println("The stack is already empty"); System.out.println("The stack is already empty");
return -1; return -1;
} }
@ -74,6 +79,16 @@ class Stack{
} }
} }
private void resize(int newSize){
private int[] transferArray = new int[newSize];
for(int i = 0; i < stackArray.length(); i++){
transferArray[i] = stackArray[i];
stackArray = transferArray;
}
maxSize = newSize;
}
/** /**
* Returns true if the stack is empty * Returns true if the stack is empty
* *

View File

@ -1,37 +1,50 @@
import java.util.LinkedList;
/** /**
* *
* @author Varun Upadhyay (https://github.com/varunu28) * @author Varun Upadhyay (https://github.com/varunu28)
* *
*/ */
// Driver Program // Driver Program
public class TreeTraversal { public class TreeTraversal {
public static void main(String[] args) { public static void main(String[] args) {
Node tree = new Node(5); Node tree = new Node(5);
tree.insert(3); tree.insert(3);
tree.insert(2);
tree.insert(7); tree.insert(7);
tree.insert(4);
tree.insert(6);
tree.insert(8);
// Prints 3 5 7 // Prints 5 3 2 4 7 6 8
tree.printInOrder(); System.out.println("Pre order traversal:");
System.out.println();
// Prints 5 3 7
tree.printPreOrder(); tree.printPreOrder();
System.out.println(); System.out.println();
// Prints 2 3 4 5 6 7 8
// Prints 3 7 5 System.out.println("In order traversal:");
tree.printInOrder();
System.out.println();
// Prints 2 4 3 6 8 7 5
System.out.println("Post order traversal:");
tree.printPostOrder(); tree.printPostOrder();
System.out.println(); System.out.println();
// Prints 5 3 7 2 4 6 8
System.out.println("Level order traversal:");
tree.printLevelOrder();
System.out.println();
} }
} }
/** /**
* The Node class which initializes a Node of a tree * The Node class which initializes a Node of a tree
* Consists of all 3 traversal methods: printInOrder, printPostOrder & printPreOrder * Consists of all 3 traversal methods: printInOrder, printPostOrder & printPreOrder
* printInOrder: LEFT -> ROOT -> RIGHT * printInOrder: LEFT -> ROOT -> RIGHT
* printPreOrder: ROOT -> LEFT -> RIGHT * printPreOrder: ROOT -> LEFT -> RIGHT
* printPostOrder: LEFT -> RIGHT -> ROOT * printPostOrder: LEFT -> RIGHT -> ROOT
*/ * printLevelOrder: Prints by level (starting at root), from left to right.
*/
class Node { class Node {
Node left, right; Node left, right;
int data; int data;
@ -88,5 +101,24 @@ class Node {
} }
System.out.print(data + " "); System.out.print(data + " ");
} }
}
/**
* O(n) time algorithm.
* Uses O(n) space to store nodes in a queue to aid in traversal.
*/
public void printLevelOrder() {
LinkedList<Node> queue = new LinkedList<>();
queue.add(this);
while (queue.size() > 0) {
Node head = queue.remove();
System.out.print(head.data + " ");
// Add children of recently-printed node to queue, if they exist.
if (head.left != null) {
queue.add(head.left);
}
if (head.right != null) {
queue.add(head.right);
}
}
}
}

View File

@ -0,0 +1,53 @@
//Dynamic Programming solution for the Egg Dropping Puzzle
public class EggDropping
{
// min trials with n eggs and m floors
private static int minTrials(int n, int m)
{
int eggFloor[][] = new int[n+1][m+1];
int result, x;
for (int i = 1; i <= n; i++)
{
eggFloor[i][0] = 0; // Zero trial for zero floor.
eggFloor[i][1] = 1; // One trial for one floor
}
// j trials for only 1 egg
for (int j = 1; j <= m; j++)
eggFloor[1][j] = j;
// Using bottom-up approach in DP
for (int i = 2; i <= n; i++)
{
for (int j = 2; j <= m; j++)
{
eggFloor[i][j] = Integer.MAX_VALUE;
for (x = 1; x <= j; x++)
{
result = 1 + Math.max(eggFloor[i-1][x-1], eggFloor[i][j-x]);
//choose min of all values for particular x
if (result < eggFloor[i][j])
eggFloor[i][j] = result;
}
}
}
return eggFloor[n][m];
}
//testing program
public static void main(String args[])
{
int n = 2, m = 4;
//result outputs min no. of trials in worst case for n eggs and m floors
int result = minTrials(n, m);
System.out.println(result);
}
}

View File

@ -11,7 +11,7 @@ import java.util.Map;
public class Fibonacci { public class Fibonacci {
public static Map<Integer,Integer> map = new HashMap<Integer,Integer>(); private static Map<Integer,Integer> map = new HashMap<Integer,Integer>();
public static void main(String[] args) throws Exception { public static void main(String[] args) throws Exception {
@ -29,7 +29,7 @@ public class Fibonacci {
* Outputs the nth fibonacci number * Outputs the nth fibonacci number
**/ **/
public static int fibMemo(int n) { private static int fibMemo(int n) {
if (map.containsKey(n)) { if (map.containsKey(n)) {
return map.get(n); return map.get(n);
} }
@ -54,7 +54,7 @@ public class Fibonacci {
* Outputs the nth fibonacci number * Outputs the nth fibonacci number
**/ **/
public static int fibBotUp(int n) { private static int fibBotUp(int n) {
Map<Integer,Integer> fib = new HashMap<Integer,Integer>(); Map<Integer,Integer> fib = new HashMap<Integer,Integer>();

View File

@ -7,7 +7,7 @@
*/ */
public class Levenshtein_distance{ public class Levenshtein_distance{
private int minimum(int a, int b, int c){ private static int minimum(int a, int b, int c){
if(a < b && a < c){ if(a < b && a < c){
return a; return a;
}else if(b < a && b < c){ }else if(b < a && b < c){
@ -16,9 +16,9 @@ public class Levenshtein_distance{
return c; return c;
} }
} }
public int calculate_distance(String a, String b){ private static int calculate_distance(String a, String b){
len_a = a.length() + 1; int len_a = a.length() + 1;
len_b = b.length() + 1; int len_b = b.length() + 1;
int [][] distance_mat = new int[len_a][len_b]; int [][] distance_mat = new int[len_a][len_b];
for(int i = 0; i < len_a; i++){ for(int i = 0; i < len_a; i++){
distance_mat[i][0] = i; distance_mat[i][0] = i;

View File

@ -0,0 +1,66 @@
class LongestCommonSubsequence {
public static String getLCS(String str1, String str2) {
//At least one string is null
if(str1 == null || str2 == null)
return null;
//At least one string is empty
if(str1.length() == 0 || str2.length() == 0)
return "";
String[] arr1 = str1.split("");
String[] arr2 = str2.split("");
//lcsMatrix[i][j] = LCS of first i elements of arr1 and first j characters of arr2
int[][] lcsMatrix = new int[arr1.length + 1][arr2.length + 1];
for(int i = 0; i < arr1.length + 1; i++)
lcsMatrix[i][0] = 0;
for(int j = 1; j < arr2.length + 1; j++)
lcsMatrix[0][j] = 0;
for(int i = 1; i < arr1.length + 1; i++) {
for(int j = 1; j < arr2.length + 1; j++) {
if(arr1[i-1].equals(arr2[j-1])) {
lcsMatrix[i][j] = lcsMatrix[i-1][j-1] + 1;
} else {
lcsMatrix[i][j] = lcsMatrix[i-1][j] > lcsMatrix[i][j-1] ? lcsMatrix[i-1][j] : lcsMatrix[i][j-1];
}
}
}
return lcsString(str1, str2, lcsMatrix);
}
public static String lcsString (String str1, String str2, int[][] lcsMatrix) {
StringBuilder lcs = new StringBuilder();
int i = str1.length(),
j = str2.length();
while(i > 0 && j > 0) {
if(str1.charAt(i-1) == str2.charAt(j-1)) {
lcs.append(str1.charAt(i-1));
i--;
j--;
} else if(lcsMatrix[i-1][j] > lcsMatrix[i][j-1]) {
i--;
} else {
j--;
}
}
return lcs.reverse().toString();
}
public static void main(String[] args) {
String str1 = "DSGSHSRGSRHTRD";
String str2 = "DATRGAGTSHS";
String lcs = getLCS(str1, str2);
//Print LCS
if(lcs != null) {
System.out.println("String 1: " + str1);
System.out.println("String 2: " + str2);
System.out.println("LCS: " + lcs);
System.out.println("LCS length: " + lcs.length());
}
}
}

View File

@ -31,7 +31,7 @@ public class LongestIncreasingSubsequence {
return r; return r;
} }
public static int LIS(int[] array) { private static int LIS(int[] array) {
int N = array.length; int N = array.length;
if (N == 0) if (N == 0)
return 0; return 0;

View File

@ -2,8 +2,7 @@
Returns the best obtainable price for a rod of Returns the best obtainable price for a rod of
length n and price[] as prices of different pieces */ length n and price[] as prices of different pieces */
public class RodCutting public class RodCutting {
{
private static int cutRod(int price[],int n) private static int cutRod(int price[],int n)
{ {

View File

@ -12,6 +12,6 @@ class Abecedarian{
else{return false;} else{return false;}
} }
}
return true; return true;
}
} }

47
Others/Armstrong.java Normal file
View File

@ -0,0 +1,47 @@
import java.util.Scanner;
/**
* A utility to check if a given number is armstrong or not. Armstrong number is
* a number that is equal to the sum of cubes of its digits for example 0, 1,
* 153, 370, 371, 407 etc. For example 153 = 1^3 + 5^3 +3^3
*
* @author mani manasa mylavarapu
*
*/
public class Armstrong {
public static void main(String[] args) {
Scanner scan = new Scanner(System.in);
System.out.println("please enter the number");
int n = scan.nextInt();
boolean isArmstrong = checkIfANumberIsAmstrongOrNot(n);
if (isArmstrong) {
System.out.println("the number is armstrong");
} else {
System.out.println("the number is not armstrong");
}
}
/**
* Checks whether a given number is an armstrong number or not. Armstrong
* number is a number that is equal to the sum of cubes of its digits for
* example 0, 1, 153, 370, 371, 407 etc.
*
* @param number
* @return boolean
*/
public static boolean checkIfANumberIsAmstrongOrNot(int number) {
int remainder, sum = 0, temp = 0;
temp = number;
while (number > 0) {
remainder = number % 10;
sum = sum + (remainder * remainder * remainder);
number = number / 10;
}
if (sum == temp) {
return true;
} else {
return false;
}
}
}

View File

@ -4,6 +4,11 @@
*/ */
import java.io.IOException;
import java.util.Arrays;
import java.util.Scanner;
import java.util.Stack;
public class Solution { public class Solution {
public static void main(String[] args) throws IOException { public static void main(String[] args) throws IOException {
@ -30,7 +35,7 @@ public static void main(String[] args) throws IOException {
//Implementing Dijkshtra's Algorithm //Implementing Dijkshtra's Algorithm
Stack <Integer> t=new Stack<Integer>(); Stack<Integer> t=new Stack<Integer>();
int src=in.nextInt(); int src=in.nextInt();
for(int i=1;i<=n;i++){ for(int i=1;i<=n;i++){
if(i!=src){t.push(i);}} if(i!=src){t.push(i);}}

View File

@ -1,4 +1,3 @@
package factorial;
import java.util.Scanner; import java.util.Scanner;
/** /**

16
Others/FloydTriangle.java Normal file
View File

@ -0,0 +1,16 @@
import java.util.Scanner;
public class FloydTriangle {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
System.out.println("Enter the number of rows which you want in your Floyd Triangle: ");
int r = sc.nextInt(), n = 0;
for(int i=0; i < r; i++) {
for(int j=0; j <= i; j++) {
System.out.print(++n + " ");
}
System.out.println();
}
}
}

158
Others/Huffman.java Normal file
View File

@ -0,0 +1,158 @@
import java.util.Comparator;
import java.util.Iterator;
import java.util.LinkedList;
import java.util.List;
import java.util.Scanner;
import java.util.Stack;
/**
*
* @author Mayank Kumar (mk9440)
*/
/*
Output :
Enter number of distinct letters
6
Enter letters with its frequncy to encode
Enter letter : a
Enter frequncy : 45
Enter letter : b
Enter frequncy : 13
Enter letter : c
Enter frequncy : 12
Enter letter : d
Enter frequncy : 16
Enter letter : e
Enter frequncy : 9
Enter letter : f
Enter frequncy : 5
Letter Encoded Form
a 0
b 1 0 1
c 1 0 0
d 1 1 1
e 1 1 0 1
f 1 1 0 0
*/
class Node{
String letr="";
int freq=0,data=0;
Node left=null,right=null;
}
//A comparator class to sort list on the basis of their frequency
class comp implements Comparator<Node>{
@Override
public int compare(Node o1, Node o2) {
if(o1.freq>o2.freq){return 1;}
else if(o1.freq<o2.freq){return -1;}
else{return 0;}
}
}
public class Huffman {
// A simple function to print a given list
//I just made it for debugging
public static void print_list(List li){
Iterator<Node> it=li.iterator();
while(it.hasNext()){Node n=it.next();System.out.print(n.freq+" ");}System.out.println();
}
//Function for making tree (Huffman Tree)
public static Node make_huffmann_tree(List li){
//Sorting list in increasing order of its letter frequency
li.sort(new comp());
Node temp=null;
Iterator it=li.iterator();
//System.out.println(li.size());
//Loop for making huffman tree till only single node remains in list
while(true){
temp=new Node();
//a and b are Node which are to be combine to make its parent
Node a=new Node(),b=new Node();
a=null;b=null;
//checking if list is eligible for combining or not
//here first assignment of it.next in a will always be true as list till end will
//must have atleast one node
a=(Node)it.next();
//Below condition is to check either list has 2nd node or not to combine
//If this condition will be false, then it means construction of huffman tree is completed
if(it.hasNext()){b=(Node)it.next();}
//Combining first two smallest nodes in list to make its parent whose frequncy
//will be equals to sum of frequency of these two nodes
if(b!=null){
temp.freq=a.freq+b.freq;a.data=0;b.data=1;//assigining 0 and 1 to left and right nodes
temp.left=a;temp.right=b;
//after combing, removing first two nodes in list which are already combined
li.remove(0);//removes first element which is now combined -step1
li.remove(0);//removes 2nd element which comes on 1st position after deleting first in step1
li.add(temp);//adding new combined node to list
//print_list(li); //For visualizing each combination step
}
//Sorting after combining to again repeat above on sorted frequency list
li.sort(new comp());
it=li.iterator();//resetting list pointer to first node (head/root of tree)
if(li.size()==1){return (Node)it.next();} //base condition ,returning root of huffman tree
}
}
//Function for finding path between root and given letter ch
public static void dfs(Node n,String ch){
Stack<Node> st=new Stack(); // stack for storing path
int freq=n.freq; // recording root freq to avoid it adding in path encoding
find_path_and_encode(st,n,ch,freq);
}
//A simple utility function to print stack (Used for printing path)
public static void print_path(Stack<Node> st){
for(int i=0;i<st.size();i++){
System.out.print(st.elementAt(i).data+" ");
}
}
public static void find_path_and_encode(Stack<Node> st,Node root,String s,int f){
//Base condition
if(root!= null){
if(root.freq!=f){st.push(root);} // avoiding root to add in path/encoding bits
if(root.letr.equals(s)){print_path(st);return;} // Recursion stopping condition when path gets founded
find_path_and_encode(st,root.left,s,f);
find_path_and_encode(st,root.right,s,f);
//Popping if path not found in right or left of this node,because we previously
//pushed this node in taking a mindset that it might be in path
st.pop();
}
}
public static void main(String args[]){
List <Node> li=new LinkedList<>();
Scanner in=new Scanner(System.in);
System.out.println("Enter number of distinct letters ");
int n=in.nextInt();
String s[]=new String[n];
System.out.print("Enter letters with its frequncy to encode\n");
for(int i=0;i<n;i++){
Node a=new Node();
System.out.print("Enter letter : ");
a.letr=in.next();s[i]=a.letr;
System.out.print("Enter frequncy : ");
a.freq=in.nextInt();System.out.println();
li.add(a);
}
Node root=new Node();
root=make_huffmann_tree(li);
System.out.println("Letter\t\tEncoded Form");
for(int i=0;i<n;i++){
System.out.print(s[i]+"\t\t");dfs(root,s[i]);System.out.println();}
}
}

View File

@ -0,0 +1,57 @@
/***
* A pseudorandom number generator.
*
* @author Tobias Carryer
* Date: October 10, 2017
*/
public class LinearCongruentialGenerator {
private double a, c, m, previousValue;
/***
* These parameters are saved and used when nextNumber() is called.
* The current timestamp in milliseconds is used as the seed.
*
* @param multiplier
* @param increment
* @param modulo The maximum number that can be generated (exclusive). A common value is 2^32.
*/
public LinearCongruentialGenerator( double multiplier, double increment, double modulo ) {
this(System.currentTimeMillis(), multiplier, increment, modulo);
}
/***
* These parameters are saved and used when nextNumber() is called.
*
* @param seed
* @param multiplier
* @param increment
* @param modulo The maximum number that can be generated (exclusive). A common value is 2^32.
*/
public LinearCongruentialGenerator( double seed, double multiplier, double increment, double modulo ) {
this.previousValue = seed;
this.a = multiplier;
this.c = increment;
this.m = modulo;
}
/**
* The smallest number that can be generated is zero.
* The largest number that can be generated is modulo-1. modulo is set in the constructor.
* @return a pseudorandom number.
*/
public double nextNumber() {
previousValue = (a * previousValue + c) % m;
return previousValue;
}
public static void main( String[] args ) {
// Show the LCG in action.
// Decisive proof that the LCG works could be made by adding each number
// generated to a Set while checking for duplicates.
LinearCongruentialGenerator lcg = new LinearCongruentialGenerator(1664525, 1013904223, Math.pow(2.0, 32.0));
for( int i = 0; i < 512; i++ ) {
System.out.println(lcg.nextNumber());
}
}
}

View File

@ -0,0 +1,144 @@
import java.util.Stack;
/**
* This implements Queue using two Stacks.
*
* Big O Runtime:
* insert(): O(1)
* remove(): O(1) amortized
* isEmpty(): O(1)
*
* A queue data structure functions the same as a real world queue.
* The elements that are added first are the first to be removed.
* New elements are added to the back/rear of the queue.
*
* @author sahilb2
*
*/
class QueueWithStack {
// Stack to keep track of elements inserted into the queue
private Stack inStack;
// Stack to keep track of elements to be removed next in queue
private Stack outStack;
/**
* Constructor
*/
public QueueWithStack() {
this.inStack = new Stack();
this.outStack = new Stack();
}
/**
* Inserts an element at the rear of the queue
*
* @param x element to be added
*/
public void insert(Object x) {
// Insert element into inStack
this.inStack.push(x);
}
/**
* Remove an element from the front of the queue
*
* @return the new front of the queue
*/
public Object remove() {
if(this.outStack.isEmpty()) {
// Move all elements from inStack to outStack (preserving the order)
while(!this.inStack.isEmpty()) {
this.outStack.push( this.inStack.pop() );
}
}
return this.outStack.pop();
}
/**
* Peek at the element from the front of the queue
*
* @return the new front of the queue
*/
public Object peek() {
if(this.outStack.isEmpty()) {
// Move all elements from inStack to outStack (preserving the order)
while(!this.inStack.isEmpty()) {
this.outStack.push( this.inStack.pop() );
}
}
return this.outStack.peek();
}
/**
* Returns true if the queue is empty
*
* @return true if the queue is empty
*/
public boolean isEmpty() {
return (this.inStack.isEmpty() && this.outStack.isEmpty());
}
}
/**
* This class is the example for the Queue class
*
* @author sahilb2
*
*/
public class QueueUsingTwoStacks {
/**
* Main method
*
* @param args Command line arguments
*/
public static void main(String args[]){
QueueWithStack myQueue = new QueueWithStack();
myQueue.insert(1);
// instack: [(top) 1]
// outStack: []
myQueue.insert(2);
// instack: [(top) 2, 1]
// outStack: []
myQueue.insert(3);
// instack: [(top) 3, 2, 1]
// outStack: []
myQueue.insert(4);
// instack: [(top) 4, 3, 2, 1]
// outStack: []
System.out.println(myQueue.isEmpty()); //Will print false
System.out.println(myQueue.remove()); //Will print 1
// instack: []
// outStack: [(top) 2, 3, 4]
myQueue.insert(5);
System.out.println(myQueue.peek()); //Will print 2
// instack: [(top) 5]
// outStack: [(top) 2, 3, 4]
myQueue.remove();
System.out.println(myQueue.peek()); //Will print 3
// instack: [(top) 5]
// outStack: [(top) 3, 4]
myQueue.remove();
System.out.println(myQueue.peek()); //Will print 4
// instack: [(top) 5]
// outStack: [(top) 4]
myQueue.remove();
// instack: [(top) 5]
// outStack: []
System.out.println(myQueue.peek()); //Will print 5
// instack: []
// outStack: [(top) 5]
myQueue.remove();
// instack: []
// outStack: []
System.out.println(myQueue.isEmpty()); //Will print true
}
}

View File

@ -67,8 +67,4 @@ public class ReverseStackUsingRecursion {
} }
} }

View File

@ -39,7 +39,7 @@ class ReverseString
BufferedReader br=new BufferedReader(new InputStreamReader(System.in)); BufferedReader br=new BufferedReader(new InputStreamReader(System.in));
System.out.println("Enter the string"); System.out.println("Enter the string");
String srr=br.readLine(); String srr=br.readLine();
System.out.println("Reverse="+reverseString(srr)); System.out.println("Reverse="+reverse(srr));
br.close(); br.close();
} }
} }

View File

@ -0,0 +1,38 @@
import java.util.*;
public class Postfix {
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
String post = scanner.nextLine(); // Takes input with spaces in between eg. "1 21 +"
System.out.println(postfixEvaluate(post));
}
// Evaluates the given postfix expression string and returns the result.
public static int postfixEvaluate(String exp) {
Stack<Integer> s = new Stack<Integer> ();
Scanner tokens = new Scanner(exp);
while (tokens.hasNext()) {
if (tokens.hasNextInt()) {
s.push(tokens.nextInt()); // If int then push to stack
} else { // else pop top two values and perform the operation
int num2 = s.pop();
int num1 = s.pop();
String op = tokens.next();
if (op.equals("+")) {
s.push(num1 + num2);
} else if (op.equals("-")) {
s.push(num1 - num2);
} else if (op.equals("*")) {
s.push(num1 * num2);
} else {
s.push(num1 / num2);
}
// "+", "-", "*", "/"
}
}
return s.pop();
}
}

View File

@ -0,0 +1,46 @@
import java.util.*;
public class Array {
public static void main(String[] args) {
Scanner s = new Scanner(System.in); // Input statement
System.out.println("Enter the size of the array");
int size = s.nextInt();
int a[] = new int[size];
int i;
// To enter the initial elements
for(i=0;i<size;i++){
System.out.println("Enter the element");
a[i] = s.nextInt();
}
// To insert a new element(we are creating a new array)
System.out.println("Enter the index at which the element should be inserted");
int insert_pos = s.nextInt();
System.out.println("Enter the element to be inserted");
int ins = s.nextInt();
int size2 = size + 1;
int b[] =new int[size2];
for(i=0;i<size2;i++){
if(i <= insert_pos){
b[i] = a[i];
}
else{
b[i] = a[i-1];
}
}
b[insert_pos] = ins;
for(i=0;i<size2;i++){
System.out.println(b[i]);
}
// To delete an element given the index
System.out.println("Enter the index at which element is to be deleted");
int del_pos = s.nextInt();
for(i=del_pos;i<size2-1;i++){
b[i] = b[i+1];
}
for(i=0;i<size2-1;i++)
System.out.println(b[i]);
}
}

View File

@ -1,4 +1,5 @@
import java.util.Scanner; import java.util.Scanner;
class krishnamurthy class krishnamurthy
{ {
int fact(int n) int fact(int n)

View File

@ -0,0 +1,29 @@
import java.util.*;
public class Solution {
public static void main(String[] args) {
//take input
Scanner scn = new Scanner(System.in);
int N = scn.nextInt(); //N is the input number
int P = scn.nextInt(); //P is precision value for eg - P is 3 in 2.564 and 5 in 3.80870.
System.out.println(squareRoot(N, P));
}
public static double squareRoot(int N, int P) {
double rv = 0; //rv means return value
double root = Math.pow(N, 0.5);
//calculate precision to power of 10 and then multiply it with root value.
int precision = (int) Math.pow(10, P);
root = root * precision;
/*typecast it into integer then divide by precision and again typecast into double
so as to have decimal points upto P precision */
rv = (int)root;
return (double)rv/precision;
}
}

View File

@ -47,7 +47,17 @@ __Properties__
###### View the algorithm in [action][merge-toptal] ###### View the algorithm in [action][merge-toptal]
### Quick
![alt text][quick-image]
From [Wikipedia][quick-wiki]: Quicksort (sometimes called partition-exchange sort) is an efficient sorting algorithm, serving as a systematic method for placing the elements of an array in order.
__Properties__
* Worst case performance O(n^2)
* Best case performance O(n log n) or O(n) with three-way partition
* Average case performance O(n^2)
###### View the algorithm in [action][quick-toptal]
### Selection ### Selection
![alt text][selection-image] ![alt text][selection-image]
@ -61,7 +71,59 @@ __Properties__
###### View the algorithm in [action][selection-toptal] ###### View the algorithm in [action][selection-toptal]
### Shell
![alt text][shell-image]
From [Wikipedia][shell-wiki]: Shellsort is a generalization of insertion sort that allows the exchange of items that are far apart. The idea is to arrange the list of elements so that, starting anywhere, considering every nth element gives a sorted list. Such a list is said to be h-sorted. Equivalently, it can be thought of as h interleaved lists, each individually sorted.
__Properties__
* Worst case performance O(nlog2 2n)
* Best case performance O(n log n)
* Average case performance depends on gap sequence
###### View the algorithm in [action][shell-toptal]
### Time-Compexity Graphs
Comparing the complexity of sorting algorithms (Bubble Sort, Insertion Sort, Selection Sort)
[Complexity Graphs](https://github.com/prateekiiest/Python/blob/master/sorts/sortinggraphs.png)
----------------------------------------------------------------------------------
## Search Algorithms
### Linear
![alt text][linear-image]
From [Wikipedia][linear-wiki]: linear search or sequential search is a method for finding a target value within a list. It sequentially checks each element of the list for the target value until a match is found or until all the elements have been searched.
Linear search runs in at worst linear time and makes at most n comparisons, where n is the length of the list.
__Properties__
* Worst case performance O(n)
* Best case performance O(1)
* Average case performance O(n)
* Worst case space complexity O(1) iterative
### Binary
![alt text][binary-image]
From [Wikipedia][binary-wiki]: Binary search, also known as half-interval search or logarithmic search, is a search algorithm that finds the position of a target value within a sorted array. It compares the target value to the middle element of the array; if they are unequal, the half in which the target cannot lie is eliminated and the search continues on the remaining half until it is successful.
__Properties__
* Worst case performance O(log n)
* Best case performance O(1)
* Average case performance O(log n)
* Worst case space complexity O(1)
From [Wikipedia][shell-wiki]: Shellsort is a generalization of insertion sort that allows the exchange of items that are far apart. The idea is to arrange the list of elements so that, starting anywhere, considering every nth element gives a sorted list. Such a list is said to be h-sorted. Equivalently, it can be thought of as h interleaved lists, each individually sorted.
__Properties__
* Worst case performance O(nlog2 2n)
* Best case performance O(n log n)
* Average case performance depends on gap sequence
###### View the algorithm in [action][shell-toptal]
[bubble-toptal]: https://www.toptal.com/developers/sorting-algorithms/bubble-sort [bubble-toptal]: https://www.toptal.com/developers/sorting-algorithms/bubble-sort
[bubble-wiki]: https://en.wikipedia.org/wiki/Bubble_sort [bubble-wiki]: https://en.wikipedia.org/wiki/Bubble_sort
@ -94,4 +156,3 @@ __Properties__
[binary-image]: https://upload.wikimedia.org/wikipedia/commons/f/f7/Binary_search_into_array.png [binary-image]: https://upload.wikimedia.org/wikipedia/commons/f/f7/Binary_search_into_array.png
[caesar]: https://upload.wikimedia.org/wikipedia/commons/4/4a/Caesar_cipher_left_shift_of_3.svg

View File

@ -0,0 +1,74 @@
import java.util.Scanner;
public class TernarySearch{
/**
* @param arr The **Sorted** array in which we will search the element.
* @param value The value that we want to search for.
* @return The index of the element if found.
* Else returns -1.
*/
public static int ternarySearch(int[] arr, int value){
return ternarySearch(arr, value, 0, arr.length - 1);
}
/**
* @param arr The **Sorted** array in which we will search the element.
* @param key The value that we want to search for.
* @param start The starting index from which we will start Searching.
* @param end The ending index till which we will Search.
* @return Returns the index of the Element if found.
* Else returns -1.
*/
public static int ternarySearch(int[] arr, int key, int start, int end) {
if (start > end){
return -1;
}
/* First boundary: add 1/3 of length to start */
int mid1 = start + (end - start) / 3;
/* Second boundary: add 2/3 of length to start */
int mid2 = start + 2 * (end - start) / 3;
if (arr[mid1] == key) {
return mid1;
}
else if (arr[mid2] == key) {
return mid2;
}
/* Search the first (1/3) rd part of the array.*/
else if (key < arr[mid1]) {
return ternarySearch(arr, key, start, mid1 - 1);
}
/* Search 3rd (1/3)rd part of the array */
else if (key > arr[mid2]) {
return ternarySearch(arr, key, mid2 + 1, end);
}
/* Search middle (1/3)rd part of the array */
else {
return ternarySearch(arr, key, mid1, mid2);
}
}
public static void main(String[] args) {
Scanner s = new Scanner(System.in);
System.out.println("Enter number of elements in the array");
int n = s.nextInt();
int arr[] = new int[n];
System.out.println("Enter the elements of the Sorted array");
for (int i= 0; i < n; i++){
arr[i] = s.nextInt();
}
System.out.println("Enter element to search for : ");
int k = s.nextInt();
int ans = ternarySearch(arr, k);
if (ans == -1) {
System.out.println(" The element is not present in the array.");
}
else {
System.out.println("The element is present at the position " + (ans+1));
}
}
}

68
Sorts/BogoSort.java Normal file
View File

@ -0,0 +1,68 @@
package Sorts;
import java.util.Random;
public class BogoSort {
private static <T> void swap(T array[], int first, int second){
T randomElement = array[first];
array[first] = array[second];
array[second] = randomElement;
}
private static <T extends Comparable<T>> boolean isSorted(T array[]){
for(int i = 0; i<array.length-1; i++){
if(array[i].compareTo(array[i+1]) > 0) return false;
}
return true;
}
// Randomly shuffles the array
private static <T> void nextPermutation(T array[]){
int length = array.length;
Random random = new Random();
for (int i = 0; i < array.length; i++) {
int randomIndex = i + random.nextInt(length - i);
swap(array, randomIndex, i);
}
}
public static <T extends Comparable<T>> void bogoSort(T array[]) {
while(!isSorted(array)){
nextPermutation(array);
}
}
// Driver Program
public static void main(String[] args)
{
// Integer Input
int[] arr1 = {4,23,6,78,1,54,231,9,12};
int last = arr1.length;
Integer[] array = new Integer[last];
for (int i=0;i<last;i++) {
array[i] = arr1[i];
}
bogoSort(array);
// Output => 1 4 6 9 12 23 54 78 231
for(int i=0; i<last; i++)
{
System.out.print(array[i]+"\t");
}
System.out.println();
// String Input
String[] array1 = {"c", "a", "e", "b","d"};
last = array1.length;
bogoSort(array1);
//Output => a b c d e
for(int i=0; i<last; i++)
{
System.out.print(array1[i]+"\t");
}
}
}

View File

@ -0,0 +1,86 @@
/**
*
* @author Mateus Bizzo (https://github.com/MattBizzo)
*
*/
class CocktailShakerSort {
/**
* This method implements the Generic Cocktail Shaker Sort
*
* @param array
* The array to be sorted
* @param last
* The count of total number of elements in array Sorts the array in
* increasing order
**/
public static <T extends Comparable<T>> void CS(T array[], int last) {
// Sorting
boolean swap;
do {
swap = false;
//front
for (int count = 0; count <= last - 2; count++) {
int comp = array[count].compareTo(array[count + 1]);
if (comp > 0) {
T aux = array[count];
array[count] = array[count + 1];
array[count + 1] = aux;
swap = true;
}
}
//break if no swap occurred
if (!swap) {
break;
}
swap = false;
//back
for (int count = last - 2; count >= 0; count--) {
int comp = array[count].compareTo(array[count + 1]);
if (comp > 0) {
T aux = array[count];
array[count] = array[count + 1];
array[count + 1] = aux;
swap = true;
}
}
last--;
//end
} while (swap);
}
// Driver Program
public static void main(String[] args) {
// Integer Input
int[] arr1 = { 4, 23, 6, 78, 1, 54, 231, 9, 12 };
int last = arr1.length;
Integer[] array = new Integer[last];
for (int i = 0; i < last; i++) {
array[i] = arr1[i];
}
CS(array, last);
// Output => 1 4 6 9 12 23 54 78 231
for (int i = 0; i < last; i++) {
System.out.print(array[i] + "\t");
}
System.out.println();
// String Input
String[] array1 = { "c", "a", "e", "b", "d" };
last = array1.length;
CS(array1, last);
// Output => a b c d e
for (int i = 0; i < last; i++) {
System.out.print(array1[i] + "\t");
}
}
}

90
Sorts/CountingSort.java Normal file
View File

@ -0,0 +1,90 @@
import java.util.ArrayList;
import java.util.Map;
import java.util.TreeMap;
/**
*
* @author Youssef Ali (https://github.com/youssefAli11997)
*
*/
class CountingSort {
/**
* This method implements the Generic Counting Sort
*
* @param array The array to be sorted
* @param last The count of total number of elements in array
* Sorts the array in increasing order
* It uses array elements as keys in the frequency map
**/
public static <T extends Comparable<T>> void CS(T[] array, int last) {
Map<T, Integer> frequency = new TreeMap<T, Integer>();
// The final output array
ArrayList<T> sortedArray = new ArrayList<T>();
// Counting the frequency of @param array elements
for(T t : array) {
try{
frequency.put(t, frequency.get(t)+1);
}catch(Exception e){ // new entry
frequency.put(t, 1);
}
}
// Filling the sortedArray
for(Map.Entry<T, Integer> element : frequency.entrySet()) {
for(int j=0; j<element.getValue(); j++)
sortedArray.add(element.getKey());
}
for(int i=0; i<array.length; i++){
array[i] = sortedArray.get(i);
}
}
// Driver Program
public static void main(String[] args) {
// Integer Input
Integer[] arr1 = {4,23,6,78,1,54,231,9,12};
int last = arr1.length;
System.out.println("Before Sorting:");
for (int i=0;i<arr1.length;i++) {
System.out.print(arr1[i] + " ");
}
System.out.println();
CS(arr1, last);
// Output => 1 4 6 9 12 23 54 78 231
System.out.println("After Sorting:");
for (int i=0;i<arr1.length;i++) {
System.out.print(arr1[i] + " ");
}
System.out.println();
System.out.println("------------------------------");
// String Input
String[] array1 = {"c", "a", "e", "b","d"};
last = array1.length;
System.out.println("Before Sorting:");
for (int i=0;i<array1.length;i++) {
System.out.print(array1[i] + " ");
}
System.out.println();
CS(array1, last);
//Output => a b c d e
System.out.println("After Sorting:");
for(int i=0; i<last; i++) {
System.out.print(array1[i]+" ");
}
}
}

View File

@ -1,61 +0,0 @@
/**
* This is my implementation of an insertion sort.
*
* I decided to do this when i didn't feel comfortable enough about implementing
* different types of sorts, so this is my trial and error to try and get myself to implement
* the various sorts correctly.
*
* @author Kody C. Kendall
*
*/
public class InsertionSortInteger {
/**
* This method implements insertion sort by integer
*
* @param initialArray array to be sorted
* @return sorted array
*/
public int[] insertionIntArraySort(int[] initialArray){
int[] sortedArray = new int[initialArray.length];
//Marking first element as sorted.
sortedArray[0] = initialArray[0];
//For each element in the initialArray
for (int index = 1; index < initialArray.length; index++){
//Finding the last index that was sorted
int lastSortedIndex = index;
//Extracting the next element to be compared w/ other sorted elements from initial array
int extractedElement = initialArray[index];
//Compare the values of the sorted index to the current extractedElement
for (lastSortedIndex = index; lastSortedIndex > 0; lastSortedIndex--){
//If our extracted element is smaller than element to the right, switch them.
if (sortedArray[lastSortedIndex-1] > extractedElement){
//move the element to the left of extractedElement to the right in sortedArray
sortedArray[lastSortedIndex] = sortedArray[lastSortedIndex-1];
//And move the current extractedElement to the left one (since it's smaller).
sortedArray[lastSortedIndex-1] = extractedElement;
}
else{
//insert element where it is.
sortedArray[lastSortedIndex] = extractedElement;
//Terminating loop since element is in the right spot.
break;
}
}
}
return sortedArray;
}
}

View File

@ -1,5 +1,3 @@
import java.io.*;
import java.util.*; import java.util.*;
class Radix { class Radix {

62
ciphers/RSA.java Normal file
View File

@ -0,0 +1,62 @@
package ciphers;
import java.math.BigInteger;
import java.security.SecureRandom;
/**
* Created by Nguyen Duy Tiep on 23-Oct-17.
*/
public class RSA {
private BigInteger modulus, privateKey, publicKey;
public RSA(int bits) {
generateKeys(bits);
}
public synchronized String encrypt(String message) {
return (new BigInteger(message.getBytes())).modPow(publicKey, modulus).toString();
}
public synchronized BigInteger encrypt(BigInteger message) {
return message.modPow(publicKey, modulus);
}
public synchronized String decrypt(String message) {
return new String((new BigInteger(message)).modPow(privateKey, modulus).toByteArray());
}
public synchronized BigInteger decrypt(BigInteger message) {
return message.modPow(privateKey, modulus);
}
/** Generate a new public and private key set. */
public synchronized void generateKeys(int bits) {
SecureRandom r = new SecureRandom();
BigInteger p = new BigInteger(bits / 2, 100, r);
BigInteger q = new BigInteger(bits / 2, 100, r);
modulus = p.multiply(q);
BigInteger m = (p.subtract(BigInteger.ONE)).multiply(q.subtract(BigInteger.ONE));
publicKey = new BigInteger("3");
while (m.gcd(publicKey).intValue() > 1) {
publicKey = publicKey.add(new BigInteger("2"));
}
privateKey = publicKey.modInverse(m);
}
/** Trivial test program. */
public static void main(String[] args) {
RSA rsa = new RSA(1024);
String text1 = "This is a message";
System.out.println("Plaintext: " + text1);
String ciphertext = rsa.encrypt(text1);
System.out.println("Ciphertext: " + ciphertext);
System.out.println("Plaintext: " + rsa.decrypt(ciphertext));
}
}

View File

@ -0,0 +1,126 @@
package Bags;
import java.util.Iterator;
import java.util.NoSuchElementException;
/**
* Collection which does not allow removing elements (only collect and iterate)
*
* @param <Element> - the generic type of an element in this bag
*/
public class Bag<Element> implements Iterable<Element> {
private Node<Element> firstElement; // first element of the bag
private int size; // size of bag
private static class Node<Element> {
private Element content;
private Node<Element> nextElement;
}
/**
* Create an empty bag
*/
public Bag() {
firstElement = null;
size = 0;
}
/**
* @return true if this bag is empty, false otherwise
*/
public boolean isEmpty() {
return firstElement == null;
}
/**
* @return the number of elements
*/
public int size() {
return size;
}
/**
* @param element - the element to add
*/
public void add(Element element) {
Node<Element> oldfirst = firstElement;
firstElement = new Node<>();
firstElement.content = element;
firstElement.nextElement = oldfirst;
size++;
}
/**
* Checks if the bag contains a specific element
*
* @param element which you want to look for
* @return true if bag contains element, otherwise false
*/
public boolean contains(Element element) {
Iterator<Element> iterator = this.iterator();
while(iterator.hasNext()) {
if (iterator.next().equals(element)) {
return true;
}
}
return false;
}
/**
* @return an iterator that iterates over the elements in this bag in arbitrary order
*/
public Iterator<Element> iterator() {
return new ListIterator<>(firstElement);
}
@SuppressWarnings("hiding")
private class ListIterator<Element> implements Iterator<Element> {
private Node<Element> currentElement;
public ListIterator(Node<Element> firstElement) {
currentElement = firstElement;
}
public boolean hasNext() {
return currentElement != null;
}
/**
* remove is not allowed in a bag
*/
@Override
public void remove() {
throw new UnsupportedOperationException();
}
public Element next() {
if (!hasNext())
throw new NoSuchElementException();
Element element = currentElement.content;
currentElement = currentElement.nextElement;
return element;
}
}
/**
* main-method for testing
*/
public static void main(String[] args) {
Bag<String> bag = new Bag<>();
bag.add("1");
bag.add("1");
bag.add("2");
System.out.println("size of bag = " + bag.size());
for (String s : bag) {
System.out.println(s);
}
System.out.println(bag.contains(null));
System.out.println(bag.contains("1"));
System.out.println(bag.contains("3"));
}
}

View File

@ -0,0 +1,124 @@
import java.util.Random;
import java.util.concurrent.atomic.AtomicInteger;
public class CircularBuffer {
private char[] _buffer;
public final int _buffer_size;
private int _write_index = 0;
private int _read_index = 0;
private AtomicInteger _readable_data = new AtomicInteger(0);
public CircularBuffer(int buffer_size) {
if(!IsPowerOfTwo(buffer_size)) {
throw new IllegalArgumentException();
}
this._buffer_size = buffer_size;
_buffer = new char[buffer_size];
}
private boolean IsPowerOfTwo(int i) {
return (i & (i - 1)) == 0;
}
private int getTrueIndex(int i) {
return i % _buffer_size;
}
public Character readOutChar() {
Character result = null;
//if we have data to read
if(_readable_data.get() > 0) {
result = new Character(_buffer[getTrueIndex(_read_index)]);
_readable_data.decrementAndGet();
_read_index++;
}
return result;
}
public boolean writeToCharBuffer(char c) {
boolean result = false;
//if we can write to the buffer
if(_readable_data.get() < _buffer_size) {
//write to buffer
_buffer[getTrueIndex(_write_index)] = c;
_readable_data.incrementAndGet();
_write_index++;
result = true;
}
return result;
}
private static class TestWriteWorker implements Runnable {
String _alphabet = "abcdefghijklmnopqrstuvwxyz0123456789";
Random _random = new Random();
CircularBuffer _buffer;
public TestWriteWorker(CircularBuffer cb) {
this._buffer = cb;
}
private char getRandomChar() {
return _alphabet.charAt(_random.nextInt(_alphabet.length()));
}
public void run() {
while(!Thread.interrupted()) {
if(!_buffer.writeToCharBuffer(getRandomChar())){
Thread.yield();
try{
Thread.sleep(10);
} catch (InterruptedException e) {
return;
}
}
}
}
}
private static class TestReadWorker implements Runnable {
CircularBuffer _buffer;
public TestReadWorker(CircularBuffer cb) {
this._buffer = cb;
}
public void run() {
System.out.println("Printing Buffer:");
while(!Thread.interrupted()) {
Character c = _buffer.readOutChar();
if(c != null) {
System.out.print(c.charValue());
} else {
Thread.yield();
try {
Thread.sleep(10);
} catch (InterruptedException e) {
System.out.println();
return;
}
}
}
}
}
public static void main(String[] args) throws InterruptedException {
int buffer_size = 1024;
//create circular buffer
CircularBuffer cb = new CircularBuffer(buffer_size);
//create threads that read and write the buffer.
Thread write_thread = new Thread(new TestWriteWorker(cb));
Thread read_thread = new Thread(new TestReadWorker(cb));
read_thread.start();
write_thread.start();
//wait some amount of time
Thread.sleep(10000);
//interrupt threads and exit
write_thread.interrupt();
read_thread.interrupt();
}
}

View File

@ -0,0 +1,174 @@
// Java program for Kruskal's algorithm to find Minimum Spanning Tree
// of a given connected, undirected and weighted graph
import java.util.*;
import java.lang.*;
import java.io.*;
class Graph
{
// A class to represent a graph edge
class Edge implements Comparable<Edge>
{
int src, dest, weight;
// Comparator function used for sorting edges based on
// their weight
public int compareTo(Edge compareEdge)
{
return this.weight-compareEdge.weight;
}
};
// A class to represent a subset for union-find
class subset
{
int parent, rank;
};
int V, E; // V-> no. of vertices & E->no.of edges
Edge edge[]; // collection of all edges
// Creates a graph with V vertices and E edges
Graph(int v, int e)
{
V = v;
E = e;
edge = new Edge[E];
for (int i=0; i<e; ++i)
edge[i] = new Edge();
}
// A utility function to find set of an element i
// (uses path compression technique)
int find(subset subsets[], int i)
{
// find root and make root as parent of i (path compression)
if (subsets[i].parent != i)
subsets[i].parent = find(subsets, subsets[i].parent);
return subsets[i].parent;
}
// A function that does union of two sets of x and y
// (uses union by rank)
void Union(subset subsets[], int x, int y)
{
int xroot = find(subsets, x);
int yroot = find(subsets, y);
// Attach smaller rank tree under root of high rank tree
// (Union by Rank)
if (subsets[xroot].rank < subsets[yroot].rank)
subsets[xroot].parent = yroot;
else if (subsets[xroot].rank > subsets[yroot].rank)
subsets[yroot].parent = xroot;
// If ranks are same, then make one as root and increment
// its rank by one
else
{
subsets[yroot].parent = xroot;
subsets[xroot].rank++;
}
}
// The main function to construct MST using Kruskal's algorithm
void KruskalMST()
{
Edge result[] = new Edge[V]; // Tnis will store the resultant MST
int e = 0; // An index variable, used for result[]
int i = 0; // An index variable, used for sorted edges
for (i=0; i<V; ++i)
result[i] = new Edge();
// Step 1: Sort all the edges in non-decreasing order of their
// weight. If we are not allowed to change the given graph, we
// can create a copy of array of edges
Arrays.sort(edge);
// Allocate memory for creating V ssubsets
subset subsets[] = new subset[V];
for(i=0; i<V; ++i)
subsets[i]=new subset();
// Create V subsets with single elements
for (int v = 0; v < V; ++v)
{
subsets[v].parent = v;
subsets[v].rank = 0;
}
i = 0; // Index used to pick next edge
// Number of edges to be taken is equal to V-1
while (e < V - 1)
{
// Step 2: Pick the smallest edge. And increment the index
// for next iteration
Edge next_edge = new Edge();
next_edge = edge[i++];
int x = find(subsets, next_edge.src);
int y = find(subsets, next_edge.dest);
// If including this edge does't cause cycle, include it
// in result and increment the index of result for next edge
if (x != y)
{
result[e++] = next_edge;
Union(subsets, x, y);
}
// Else discard the next_edge
}
// print the contents of result[] to display the built MST
System.out.println("Following are the edges in the constructed MST");
for (i = 0; i < e; ++i)
System.out.println(result[i].src+" -- "+result[i].dest+" == "+
result[i].weight);
}
// Driver Program
public static void main (String[] args)
{
/* Let us create following weighted graph
10
0--------1
| \ |
6| 5\ |15
| \ |
2--------3
4 */
int V = 4; // Number of vertices in graph
int E = 5; // Number of edges in graph
Graph graph = new Graph(V, E);
// add edge 0-1
graph.edge[0].src = 0;
graph.edge[0].dest = 1;
graph.edge[0].weight = 10;
// add edge 0-2
graph.edge[1].src = 0;
graph.edge[1].dest = 2;
graph.edge[1].weight = 6;
// add edge 0-3
graph.edge[2].src = 0;
graph.edge[2].dest = 3;
graph.edge[2].weight = 5;
// add edge 1-3
graph.edge[3].src = 1;
graph.edge[3].dest = 3;
graph.edge[3].weight = 15;
// add edge 2-3
graph.edge[4].src = 2;
graph.edge[4].dest = 3;
graph.edge[4].weight = 4;
graph.KruskalMST();
}
}

View File

@ -0,0 +1,114 @@
// A Java program for Prim's Minimum Spanning Tree (MST) algorithm.
//adjacency matrix representation of the graph
import java.lang.*;
class PrimMST
{
// Number of vertices in the graph
private static final int V=5;
// A utility function to find the vertex with minimum key
// value, from the set of vertices not yet included in MST
int minKey(int key[], Boolean mstSet[])
{
// Initialize min value
int min = Integer.MAX_VALUE, min_index=-1;
for (int v = 0; v < V; v++)
if (mstSet[v] == false && key[v] < min)
{
min = key[v];
min_index = v;
}
return min_index;
}
// A utility function to print the constructed MST stored in
// parent[]
void printMST(int parent[], int n, int graph[][])
{
System.out.println("Edge Weight");
for (int i = 1; i < V; i++)
System.out.println(parent[i]+" - "+ i+" "+
graph[i][parent[i]]);
}
// Function to construct and print MST for a graph represented
// using adjacency matrix representation
void primMST(int graph[][])
{
// Array to store constructed MST
int parent[] = new int[V];
// Key values used to pick minimum weight edge in cut
int key[] = new int [V];
// To represent set of vertices not yet included in MST
Boolean mstSet[] = new Boolean[V];
// Initialize all keys as INFINITE
for (int i = 0; i < V; i++)
{
key[i] = Integer.MAX_VALUE;
mstSet[i] = false;
}
// Always include first 1st vertex in MST.
key[0] = 0; // Make key 0 so that this vertex is
// picked as first vertex
parent[0] = -1; // First node is always root of MST
// The MST will have V vertices
for (int count = 0; count < V-1; count++)
{
// Pick thd minimum key vertex from the set of vertices
// not yet included in MST
int u = minKey(key, mstSet);
// Add the picked vertex to the MST Set
mstSet[u] = true;
// Update key value and parent index of the adjacent
// vertices of the picked vertex. Consider only those
// vertices which are not yet included in MST
for (int v = 0; v < V; v++)
// graph[u][v] is non zero only for adjacent vertices of m
// mstSet[v] is false for vertices not yet included in MST
// Update the key only if graph[u][v] is smaller than key[v]
if (graph[u][v]!=0 && mstSet[v] == false &&
graph[u][v] < key[v])
{
parent[v] = u;
key[v] = graph[u][v];
}
}
// print the constructed MST
printMST(parent, V, graph);
}
public static void main (String[] args)
{
/* Let us create the following graph
2 3
(0)--(1)--(2)
| / \ |
6| 8/ \5 |7
| / \ |
(3)-------(4)
9 */
MST t = new MST();
int graph[][] = new int[][] {{0, 2, 0, 6, 0},
{2, 0, 3, 8, 5},
{0, 3, 0, 0, 7},
{6, 8, 0, 0, 9},
{0, 5, 7, 9, 0},
};
// Print the solution
t.primMST(graph);
}
}

View File

@ -0,0 +1,42 @@
import java.util.ArrayList;
public class GenericArrayListQueue<T> {
ArrayList<T> _queue = new ArrayList<T>();
private boolean hasElements() {
return !_queue.isEmpty();
}
public T peek() {
T result = null;
if(this.hasElements()) { result = _queue.get(0); }
return result;
}
public boolean add(T element) {
return _queue.add(element);
}
public T poll() {
T result = null;
if(this.hasElements()) { result = _queue.remove(0); }
return result;
}
public static void main(String[] args) {
GenericArrayListQueue<Integer> queue = new GenericArrayListQueue<Integer>();
System.out.println("Running...");
assert queue.peek() == null;
assert queue.poll() == null;
assert queue.add(1) == true;
assert queue.peek() == 1;
assert queue.add(2) == true;
assert queue.peek() == 1;
assert queue.poll() == 1;
assert queue.peek() == 2;
assert queue.poll() == 2;
assert queue.peek() == null;
assert queue.poll() == null;
System.out.println("Finished.");
}
}

View File

@ -0,0 +1,98 @@
/**
*
* @author Varun Upadhyay (https://github.com/varunu28)
*
*/
// An implementation of a Stack using a Linked List
class StackOfLinkedList {
public static void main(String[] args) {
LinkedListStack stack = new LinkedListStack();
stack.push(1);
stack.push(2);
stack.push(3);
stack.push(4);
stack.printStack();
System.out.println("Size of stack currently is: " + stack.getSize());
stack.pop();
stack.pop();
}
}
// A node class
class Node {
public int data;
public Node next;
public Node(int data) {
this.data = data;
this.next = null;
}
}
/**
* A class which implements a stack using a linked list
*
* Contains all the stack methods : push, pop, printStack, isEmpty
**/
class LinkedListStack {
Node head = null;
int size = 0;
public void push(int x) {
Node n = new Node(x);
if (getSize() == 0) {
head = n;
}
else {
Node temp = head;
n.next = temp;
head = n;
}
size++;
}
public void pop() {
if (getSize() == 0) {
System.out.println("Empty stack. Nothing to pop");
}
Node temp = head;
head = head.next;
size--;
System.out.println("Popped element is: " + temp.data);
}
public void printStack() {
Node temp = head;
System.out.println("Stack is printed as below: ");
while (temp != null) {
System.out.print(temp.data + " ");
temp = temp.next;
}
System.out.println();
}
public boolean isEmpty() {
return getSize() == 0;
}
public int getSize() {
return size;
}
}

View File

@ -0,0 +1,100 @@
/**
*
* @author Varun Upadhyay (https://github.com/varunu28)
*
*/
import java.util.LinkedList;
public class FindHeightOfTree {
// Driver Program
public static void main(String[] args) {
Node tree = new Node(5);
tree.insert(3);
tree.insert(7);
tree.insert(1);
tree.insert(-1);
tree.insert(29);
tree.insert(93);
tree.insert(6);
tree.insert(0);
tree.insert(-5);
tree.insert(-6);
tree.insert(-8);
tree.insert(-1);
// A level order representation of the tree
tree.printLevelOrder();
System.out.println();
System.out.println("Height of the tree is: " + tree.findHeight());
}
}
/**
* The Node class which initializes a Node of a tree
* printLevelOrder: ROOT -> ROOT's CHILDREN -> ROOT's CHILDREN's CHILDREN -> etc
* findHeight: Returns the height of the tree i.e. the number of links between root and farthest leaf
*/
class Node {
Node left, right;
int data;
public Node(int data) {
this.data = data;
}
public void insert (int value) {
if (value < data) {
if (left == null) {
left = new Node(value);
}
else {
left.insert(value);
}
}
else {
if (right == null) {
right = new Node(value);
}
else {
right.insert(value);
}
}
}
public void printLevelOrder() {
LinkedList<Node> queue = new LinkedList<>();
queue.add(this);
while(!queue.isEmpty()) {
Node n = queue.poll();
System.out.print(n.data + " ");
if (n.left != null) {
queue.add(n.left);
}
if (n.right != null) {
queue.add(n.right);
}
}
}
public int findHeight() {
return findHeight(this);
}
private int findHeight(Node root) {
if (root.left == null && root.right == null) {
return 0;
}
else if (root.left != null && root.right != null) {
return 1 + Math.max(findHeight(root.left), findHeight(root.right));
}
else if (root.left == null && root.right != null) {
return 1 + findHeight(root.right);
}
else {
return 1 + findHeight(root.left);
}
}
}

View File

@ -0,0 +1,62 @@
import java.util.Queue;
import java.util.LinkedList;
/* Class to represent Tree node */
class Node {
int data;
Node left, right;
public Node(int item) {
data = item;
left = null;
right = null;
}
}
/* Class to print Level Order Traversal */
class BinaryTree {
Node root;
/* Given a binary tree. Print its nodes in level order
using array for implementing queue */
void printLevelOrder()
{
Queue<Node> queue = new LinkedList<Node>();
queue.add(root);
while (!queue.isEmpty())
{
/* poll() removes the present head.
For more information on poll() visit
http://www.tutorialspoint.com/java/util/linkedlist_poll.htm */
Node tempNode = queue.poll();
System.out.print(tempNode.data + " ");
/*Enqueue left child */
if (tempNode.left != null) {
queue.add(tempNode.left);
}
/*Enqueue right child */
if (tempNode.right != null) {
queue.add(tempNode.right);
}
}
}
public static void main(String args[])
{
/* creating a binary tree and entering
the nodes */
BinaryTree tree_level = new BinaryTree();
tree_level.root = new Node(1);
tree_level.root.left = new Node(2);
tree_level.root.right = new Node(3);
tree_level.root.left.left = new Node(4);
tree_level.root.left.right = new Node(5);
System.out.println("Level order traversal of binary tree is - ");
tree_level.printLevelOrder();
}
}

View File

@ -0,0 +1,78 @@
class Node
{
int data;
Node left, right;
public Node(int item)
{
data = item;
left = right = null;
}
}
class BinaryTree
{
// Root of the Binary Tree
Node root;
public BinaryTree()
{
root = null;
}
/* function to print level order traversal of tree*/
void printLevelOrder()
{
int h = height(root);
int i;
for (i=1; i<=h; i++)
printGivenLevel(root, i);
}
/* Compute the "height" of a tree -- the number of
nodes along the longest path from the root node
down to the farthest leaf node.*/
int height(Node root)
{
if (root == null)
return 0;
else
{
/* compute height of each subtree */
int lheight = height(root.left);
int rheight = height(root.right);
/* use the larger one */
if (lheight > rheight)
return(lheight+1);
else return(rheight+1);
}
}
/* Print nodes at the given level */
void printGivenLevel (Node root ,int level)
{
if (root == null)
return;
if (level == 1)
System.out.print(root.data + " ");
else if (level > 1)
{
printGivenLevel(root.left, level-1);
printGivenLevel(root.right, level-1);
}
}
/* Driver program to test above functions */
public static void main(String args[])
{
BinaryTree tree = new BinaryTree();
tree.root= new Node(1);
tree.root.left= new Node(2);
tree.root.right= new Node(3);
tree.root.left.left= new Node(4);
tree.root.left.right= new Node(5);
System.out.println("Level order traversal of binary tree is ");
tree.printLevelOrder();
}
}

View File

@ -0,0 +1,105 @@
// Java program to print top view of Binary tree
import java.util.*;
// Class for a tree node
class TreeNode
{
// Members
int key;
TreeNode left, right;
// Constructor
public TreeNode(int key)
{
this.key = key;
left = right = null;
}
}
// A class to represent a queue item. The queue is used to do Level
// order traversal. Every Queue item contains node and horizontal
// distance of node from root
class QItem
{
TreeNode node;
int hd;
public QItem(TreeNode n, int h)
{
node = n;
hd = h;
}
}
// Class for a Binary Tree
class Tree
{
TreeNode root;
// Constructors
public Tree() { root = null; }
public Tree(TreeNode n) { root = n; }
// This method prints nodes in top view of binary tree
public void printTopView()
{
// base case
if (root == null) { return; }
// Creates an empty hashset
HashSet<Integer> set = new HashSet<>();
// Create a queue and add root to it
Queue<QItem> Q = new LinkedList<QItem>();
Q.add(new QItem(root, 0)); // Horizontal distance of root is 0
// Standard BFS or level order traversal loop
while (!Q.isEmpty())
{
// Remove the front item and get its details
QItem qi = Q.remove();
int hd = qi.hd;
TreeNode n = qi.node;
// If this is the first node at its horizontal distance,
// then this node is in top view
if (!set.contains(hd))
{
set.add(hd);
System.out.print(n.key + " ");
}
// Enqueue left and right children of current node
if (n.left != null)
Q.add(new QItem(n.left, hd-1));
if (n.right != null)
Q.add(new QItem(n.right, hd+1));
}
}
}
// Driver class to test above methods
public class Main
{
public static void main(String[] args)
{
/* Create following Binary Tree
1
/ \
2 3
\
4
\
5
\
6*/
TreeNode root = new TreeNode(1);
root.left = new TreeNode(2);
root.right = new TreeNode(3);
root.left.right = new TreeNode(4);
root.left.right.right = new TreeNode(5);
root.left.right.right.right = new TreeNode(6);
Tree t = new Tree(root);
System.out.println("Following are nodes in top view of Binary Tree");
t.printTopView();
}
}

View File

@ -0,0 +1,135 @@
//Trie Data structure implementation without any libraries */
/**
*
* @author Dheeraj Kumar Barnwal (https://github.com/dheeraj92)
*
*/
import java.util.Scanner;
public class TrieImp {
public class TrieNode {
TrieNode[] child;
boolean end;
public TrieNode(){
child = new TrieNode[26];
end = false;
}
}
private final TrieNode root;
public TrieImp(){
root = new TrieNode();
}
public void insert(String word){
TrieNode currentNode = root;
for(int i=0; i < word.length();i++){
TrieNode node = currentNode.child[word.charAt(i)-'a'];
if(node == null){
node = new TrieNode();
currentNode.child[word.charAt(i)-'a']=node;
}
currentNode = node;
}
currentNode.end = true;
}
public boolean search(String word){
TrieNode currentNode = root;
for(int i=0;i<word.length();i++){
char ch = word.charAt(i);
TrieNode node = currentNode.child[ch-'a'];
if(node == null){
return false;
}
currentNode = node;
}
return currentNode.end;
}
public boolean delete(String word){
TrieNode currentNode = root;
for(int i=0;i<word.length();i++){
char ch = word.charAt(i);
TrieNode node = currentNode.child[ch-'a'];
if(node == null){
return false;
}
currentNode = node;
}
if(currentNode.end == true){
currentNode.end = false;
return true;
}
return false;
}
public static void sop(String print){
System.out.println(print);
}
//Regex to check if word contains only a-z character
public static boolean isValid(String word){
return word.matches("^[a-z]+$");
}
public static void main(String[] args) {
TrieImp obj = new TrieImp();
String word;
@SuppressWarnings("resource")
Scanner scan = new Scanner(System.in);
sop("string should contain only a-z character for all operation");
while(true){
sop("1. Insert\n2. Search\n3. Delete\n4. Quit");
try{
int t = scan.nextInt();
switch (t) {
case 1:
word = scan.next();
if(isValid(word))
obj.insert(word);
else
sop("Invalid string: allowed only a-z");
break;
case 2:
word = scan.next();
boolean resS=false;
if(isValid(word))
resS = obj.search(word);
else
sop("Invalid string: allowed only a-z");
if(resS)
sop("word found");
else
sop("word not found");
break;
case 3:
word = scan.next();
boolean resD=false;
if(isValid(word))
resD = obj.delete(word);
else
sop("Invalid string: allowed only a-z");
if(resD){
sop("word got deleted successfully");
}else{
sop("word not found");
}
break;
case 4:
sop("Quit successfully");
System.exit(1);
break;
default:
sop("Input int from 1-4");
break;
}
}catch(Exception e){
String badInput = scan.next();
sop("This is bad input: " + badInput);
}
}
}
}

View File

@ -0,0 +1,62 @@
class Node
{
int data;
Node left, right;
public Node(int item)
{
data = item;
left = right = null;
}
}
public class BinaryTree
{
//Root of the Binary Tree
Node root;
/* can give min and max value according to your code or
can write a function to find min and max value of tree. */
/* returns true if given search tree is binary
search tree (efficient version) */
boolean isBST() {
return isBSTUtil(root, Integer.MIN_VALUE,
Integer.MAX_VALUE);
}
/* Returns true if the given tree is a BST and its
values are >= min and <= max. */
boolean isBSTUtil(Node node, int min, int max)
{
/* an empty tree is BST */
if (node == null)
return true;
/* false if this node violates the min/max constraints */
if (node.data < min || node.data > max)
return false;
/* otherwise check the subtrees recursively
tightening the min/max constraints */
// Allow only distinct values
return (isBSTUtil(node.left, min, node.data-1) &&
isBSTUtil(node.right, node.data+1, max));
}
/* Driver program to test above functions */
public static void main(String args[])
{
BinaryTree tree = new BinaryTree();
tree.root = new Node(4);
tree.root.left = new Node(2);
tree.root.right = new Node(5);
tree.root.left.left = new Node(1);
tree.root.left.right = new Node(3);
if (tree.isBST())
System.out.println("IS BST");
else
System.out.println("Not a BST");
}
}