commit
230a0059e7
158
Huffman.java
Normal file
158
Huffman.java
Normal file
@ -0,0 +1,158 @@
|
||||
|
||||
import java.util.Comparator;
|
||||
import java.util.Iterator;
|
||||
import java.util.LinkedList;
|
||||
import java.util.List;
|
||||
import java.util.Scanner;
|
||||
import java.util.Stack;
|
||||
/**
|
||||
*
|
||||
* @author Mayank Kumar (mk9440)
|
||||
*/
|
||||
/*
|
||||
Output :
|
||||
|
||||
Enter number of distinct letters
|
||||
6
|
||||
Enter letters with its frequncy to encode
|
||||
Enter letter : a
|
||||
Enter frequncy : 45
|
||||
|
||||
Enter letter : b
|
||||
Enter frequncy : 13
|
||||
|
||||
Enter letter : c
|
||||
Enter frequncy : 12
|
||||
|
||||
Enter letter : d
|
||||
Enter frequncy : 16
|
||||
|
||||
Enter letter : e
|
||||
Enter frequncy : 9
|
||||
|
||||
Enter letter : f
|
||||
Enter frequncy : 5
|
||||
|
||||
Letter Encoded Form
|
||||
a 0
|
||||
b 1 0 1
|
||||
c 1 0 0
|
||||
d 1 1 1
|
||||
e 1 1 0 1
|
||||
f 1 1 0 0
|
||||
|
||||
*/
|
||||
|
||||
class Node{
|
||||
String letr="";
|
||||
int freq=0,data=0;
|
||||
Node left=null,right=null;
|
||||
}
|
||||
|
||||
//A comparator class to sort list on the basis of their frequency
|
||||
class comp implements Comparator<Node>{
|
||||
@Override
|
||||
public int compare(Node o1, Node o2) {
|
||||
if(o1.freq>o2.freq){return 1;}
|
||||
else if(o1.freq<o2.freq){return -1;}
|
||||
else{return 0;}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
public class Huffman {
|
||||
|
||||
// A simple function to print a given list
|
||||
//I just made it for debugging
|
||||
public static void print_list(List li){
|
||||
Iterator<Node> it=li.iterator();
|
||||
while(it.hasNext()){Node n=it.next();System.out.print(n.freq+" ");}System.out.println();
|
||||
}
|
||||
|
||||
//Function for making tree (Huffman Tree)
|
||||
public static Node make_huffmann_tree(List li){
|
||||
//Sorting list in increasing order of its letter frequency
|
||||
li.sort(new comp());
|
||||
Node temp=null;
|
||||
Iterator it=li.iterator();
|
||||
//System.out.println(li.size());
|
||||
//Loop for making huffman tree till only single node remains in list
|
||||
while(true){
|
||||
temp=new Node();
|
||||
//a and b are Node which are to be combine to make its parent
|
||||
Node a=new Node(),b=new Node();
|
||||
a=null;b=null;
|
||||
//checking if list is eligible for combining or not
|
||||
//here first assignment of it.next in a will always be true as list till end will
|
||||
//must have atleast one node
|
||||
a=(Node)it.next();
|
||||
//Below condition is to check either list has 2nd node or not to combine
|
||||
//If this condition will be false, then it means construction of huffman tree is completed
|
||||
if(it.hasNext()){b=(Node)it.next();}
|
||||
//Combining first two smallest nodes in list to make its parent whose frequncy
|
||||
//will be equals to sum of frequency of these two nodes
|
||||
if(b!=null){
|
||||
temp.freq=a.freq+b.freq;a.data=0;b.data=1;//assigining 0 and 1 to left and right nodes
|
||||
temp.left=a;temp.right=b;
|
||||
//after combing, removing first two nodes in list which are already combined
|
||||
li.remove(0);//removes first element which is now combined -step1
|
||||
li.remove(0);//removes 2nd element which comes on 1st position after deleting first in step1
|
||||
li.add(temp);//adding new combined node to list
|
||||
//print_list(li); //For visualizing each combination step
|
||||
}
|
||||
//Sorting after combining to again repeat above on sorted frequency list
|
||||
li.sort(new comp());
|
||||
it=li.iterator();//resetting list pointer to first node (head/root of tree)
|
||||
if(li.size()==1){return (Node)it.next();} //base condition ,returning root of huffman tree
|
||||
}
|
||||
}
|
||||
|
||||
//Function for finding path between root and given letter ch
|
||||
public static void dfs(Node n,String ch){
|
||||
Stack<Node> st=new Stack(); // stack for storing path
|
||||
int freq=n.freq; // recording root freq to avoid it adding in path encoding
|
||||
find_path_and_encode(st,n,ch,freq);
|
||||
}
|
||||
|
||||
//A simple utility function to print stack (Used for printing path)
|
||||
public static void print_path(Stack<Node> st){
|
||||
for(int i=0;i<st.size();i++){
|
||||
System.out.print(st.elementAt(i).data+" ");
|
||||
}
|
||||
}
|
||||
|
||||
public static void find_path_and_encode(Stack<Node> st,Node root,String s,int f){
|
||||
//Base condition
|
||||
if(root!= null){
|
||||
if(root.freq!=f){st.push(root);} // avoiding root to add in path/encoding bits
|
||||
if(root.letr.equals(s)){print_path(st);return;} // Recursion stopping condition when path gets founded
|
||||
find_path_and_encode(st,root.left,s,f);
|
||||
find_path_and_encode(st,root.right,s,f);
|
||||
//Popping if path not found in right or left of this node,because we previously
|
||||
//pushed this node in taking a mindset that it might be in path
|
||||
st.pop();
|
||||
}
|
||||
}
|
||||
|
||||
public static void main(String args[]){
|
||||
List <Node> li=new LinkedList<>();
|
||||
Scanner in=new Scanner(System.in);
|
||||
System.out.println("Enter number of distinct letters ");
|
||||
int n=in.nextInt();
|
||||
String s[]=new String[n];
|
||||
System.out.print("Enter letters with its frequncy to encode\n");
|
||||
for(int i=0;i<n;i++){
|
||||
Node a=new Node();
|
||||
System.out.print("Enter letter : ");
|
||||
a.letr=in.next();s[i]=a.letr;
|
||||
System.out.print("Enter frequncy : ");
|
||||
a.freq=in.nextInt();System.out.println();
|
||||
li.add(a);
|
||||
}
|
||||
Node root=new Node();
|
||||
root=make_huffmann_tree(li);
|
||||
System.out.println("Letter\t\tEncoded Form");
|
||||
for(int i=0;i<n;i++){
|
||||
System.out.print(s[i]+"\t\t");dfs(root,s[i]);System.out.println();}
|
||||
}
|
||||
}
|
Loading…
Reference in New Issue
Block a user