refactor: IntrospectiveSort (#5316)

This commit is contained in:
Alex Klymenko 2024-08-11 20:00:47 +02:00 committed by GitHub
parent 66bfaff807
commit 2837585705
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
2 changed files with 93 additions and 93 deletions

View File

@ -9,76 +9,131 @@ public class IntrospectiveSort implements SortAlgorithm {
private static final int INSERTION_SORT_THRESHOLD = 16; private static final int INSERTION_SORT_THRESHOLD = 16;
/**
* Sorts the given array using Introspective Sort, which combines quicksort, heapsort, and insertion sort.
*
* @param array The array to be sorted
* @param <T> The type of elements in the array, which must be comparable
* @return The sorted array
*/
@Override @Override
public <T extends Comparable<T>> T[] sort(T[] a) { public <T extends Comparable<T>> T[] sort(T[] array) {
int n = a.length; if (array == null || array.length <= 1) {
introSort(a, 0, n - 1, 2 * (int) (Math.log(n) / Math.log(2))); return array;
return a; }
final int depth = 2 * (int) (Math.log(array.length) / Math.log(2));
introspectiveSort(array, 0, array.length - 1, depth);
return array;
} }
private static <T extends Comparable<T>> void introSort(T[] a, int low, int high, int depth) { /**
* Performs introspective sort on the specified subarray.
*
* @param array The array to be sorted
* @param low The starting index of the subarray
* @param high The ending index of the subarray
* @param depth The current depth of recursion
* @param <T> The type of elements in the array, which must be comparable
*/
private static <T extends Comparable<T>> void introspectiveSort(T[] array, final int low, int high, final int depth) {
while (high - low > INSERTION_SORT_THRESHOLD) { while (high - low > INSERTION_SORT_THRESHOLD) {
if (depth == 0) { if (depth == 0) {
heapSort(a, low, high); heapSort(array, low, high);
return; return;
} }
int pivotIndex = partition(a, low, high); final int pivotIndex = partition(array, low, high);
introSort(a, pivotIndex + 1, high, depth - 1); introspectiveSort(array, pivotIndex + 1, high, depth - 1);
high = pivotIndex - 1; high = pivotIndex - 1;
} }
insertionSort(a, low, high); insertionSort(array, low, high);
} }
private static <T extends Comparable<T>> int partition(T[] a, int low, int high) { /**
int pivotIndex = low + (int) (Math.random() * (high - low + 1)); * Partitions the array around a pivot.
SortUtils.swap(a, pivotIndex, high); *
T pivot = a[high]; * @param array The array to be partitioned
* @param low The starting index of the subarray
* @param high The ending index of the subarray
* @param <T> The type of elements in the array, which must be comparable
* @return The index of the pivot
*/
private static <T extends Comparable<T>> int partition(T[] array, final int low, final int high) {
final int pivotIndex = low + (int) (Math.random() * (high - low + 1));
SortUtils.swap(array, pivotIndex, high);
final T pivot = array[high];
int i = low - 1; int i = low - 1;
for (int j = low; j <= high - 1; j++) { for (int j = low; j < high; j++) {
if (a[j].compareTo(pivot) <= 0) { if (array[j].compareTo(pivot) <= 0) {
i++; i++;
SortUtils.swap(a, i, j); SortUtils.swap(array, i, j);
} }
} }
SortUtils.swap(a, i + 1, high); SortUtils.swap(array, i + 1, high);
return i + 1; return i + 1;
} }
private static <T extends Comparable<T>> void insertionSort(T[] a, int low, int high) { /**
* Sorts a subarray using insertion sort.
*
* @param array The array to be sorted
* @param low The starting index of the subarray
* @param high The ending index of the subarray
* @param <T> The type of elements in the array, which must be comparable
*/
private static <T extends Comparable<T>> void insertionSort(T[] array, final int low, final int high) {
for (int i = low + 1; i <= high; i++) { for (int i = low + 1; i <= high; i++) {
T key = a[i]; final T key = array[i];
int j = i - 1; int j = i - 1;
while (j >= low && a[j].compareTo(key) > 0) { while (j >= low && array[j].compareTo(key) > 0) {
a[j + 1] = a[j]; array[j + 1] = array[j];
j--; j--;
} }
a[j + 1] = key; array[j + 1] = key;
} }
} }
private static <T extends Comparable<T>> void heapSort(T[] a, int low, int high) { /**
for (int i = (high + low - 1) / 2; i >= low; i--) { * Sorts a subarray using heapsort.
heapify(a, i, high - low + 1, low); *
* @param array The array to be sorted
* @param low The starting index of the subarray
* @param high The ending index of the subarray
* @param <T> The type of elements in the array, which must be comparable
*/
private static <T extends Comparable<T>> void heapSort(T[] array, final int low, final int high) {
final int n = high - low + 1;
for (int i = (n / 2) - 1; i >= 0; i--) {
heapify(array, i, n, low);
} }
for (int i = high; i > low; i--) { for (int i = high; i > low; i--) {
SortUtils.swap(a, low, i); SortUtils.swap(array, low, i);
heapify(a, low, i - low, low); heapify(array, 0, i - low, low);
} }
} }
private static <T extends Comparable<T>> void heapify(T[] a, int i, int n, int low) { /**
int left = 2 * i - low + 1; * Maintains the heap property for a subarray.
int right = 2 * i - low + 2; *
* @param array The array to be heapified
* @param i The index to be heapified
* @param n The size of the heap
* @param low The starting index of the subarray
* @param <T> The type of elements in the array, which must be comparable
*/
private static <T extends Comparable<T>> void heapify(T[] array, final int i, final int n, final int low) {
final int left = 2 * i + 1;
final int right = 2 * i + 2;
int largest = i; int largest = i;
if (left < n && a[left].compareTo(a[largest]) > 0) {
if (left < n && array[low + left].compareTo(array[low + largest]) > 0) {
largest = left; largest = left;
} }
if (right < n && a[right].compareTo(a[largest]) > 0) { if (right < n && array[low + right].compareTo(array[low + largest]) > 0) {
largest = right; largest = right;
} }
if (largest != i) { if (largest != i) {
SortUtils.swap(a, i, largest); SortUtils.swap(array, low + i, low + largest);
heapify(a, largest, n, low); heapify(array, largest, n, low);
} }
} }
} }

View File

@ -1,63 +1,8 @@
package com.thealgorithms.sorts; package com.thealgorithms.sorts;
import static org.junit.jupiter.api.Assertions.assertArrayEquals; public class IntrospectiveSortTest extends SortingAlgorithmTest {
import static org.junit.jupiter.api.Assertions.assertThrows; @Override
SortAlgorithm getSortAlgorithm() {
import org.junit.jupiter.api.Test; return new IntrospectiveSort();
public class IntrospectiveSortTest {
@Test
// valid test case
public void strandSortNonDuplicateTest() {
Integer[] expectedArray = {1, 2, 3, 4, 5};
Integer[] actualList = new IntrospectiveSort().sort(expectedArray);
assertArrayEquals(expectedArray, actualList);
}
@Test
// valid test case
public void strandSortDuplicateTest() {
Integer[] expectedArray = {2, 2, 2, 5, 7};
Integer[] actualList = new IntrospectiveSort().sort(expectedArray);
assertArrayEquals(expectedArray, actualList);
}
@Test
// valid test case
public void strandSortEmptyTest() {
Integer[] expectedArray = {};
Integer[] actualList = new IntrospectiveSort().sort(expectedArray);
assertArrayEquals(expectedArray, actualList);
}
@Test
// valid test case
public void strandSortNullTest() {
Integer[] expectedArray = null;
assertThrows(NullPointerException.class, () -> { new IntrospectiveSort().sort(expectedArray); });
}
@Test
// valid test case
public void strandSortNegativeTest() {
Integer[] expectedArray = {-1, -2, -3, -4, -5};
Integer[] actualList = new IntrospectiveSort().sort(expectedArray);
assertArrayEquals(expectedArray, actualList);
}
@Test
// valid test case
public void strandSortNegativeAndPositiveTest() {
Integer[] expectedArray = {-1, -2, -3, 4, 5};
Integer[] actualList = new IntrospectiveSort().sort(expectedArray);
assertArrayEquals(expectedArray, actualList);
}
@Test
// valid test case
public void allSameTest() {
Integer[] expectedArray = {1, 1, 1, 1, 1};
Integer[] actualList = new IntrospectiveSort().sort(expectedArray);
assertArrayEquals(expectedArray, actualList);
} }
} }