Add algorithm for the Mandelbrot set (#2155)
* Add Euler method (from master) trying to avoid to prettier-error by making the commit from the master-branch * delete file * Add algorithm for the Mandelbrot set * remove unnecessary import * fix comments * Changed variable name * add package
This commit is contained in:
parent
db86e6454a
commit
2ad3bb7199
192
Others/Mandelbrot.java
Normal file
192
Others/Mandelbrot.java
Normal file
@ -0,0 +1,192 @@
|
||||
package Others;
|
||||
|
||||
import java.awt.*;
|
||||
import java.awt.image.BufferedImage;
|
||||
import java.io.File;
|
||||
import java.io.IOException;
|
||||
import javax.imageio.ImageIO;
|
||||
|
||||
/**
|
||||
* The Mandelbrot set is the set of complex numbers "c" for which the series "z_(n+1) = z_n * z_n +
|
||||
* c" does not diverge, i.e. remains bounded. Thus, a complex number "c" is a member of the
|
||||
* Mandelbrot set if, when starting with "z_0 = 0" and applying the iteration repeatedly, the
|
||||
* absolute value of "z_n" remains bounded for all "n > 0". Complex numbers can be written as "a +
|
||||
* b*i": "a" is the real component, usually drawn on the x-axis, and "b*i" is the imaginary
|
||||
* component, usually drawn on the y-axis. Most visualizations of the Mandelbrot set use a
|
||||
* color-coding to indicate after how many steps in the series the numbers outside the set cross the
|
||||
* divergence threshold. Images of the Mandelbrot set exhibit an elaborate and infinitely
|
||||
* complicated boundary that reveals progressively ever-finer recursive detail at increasing
|
||||
* magnifications, making the boundary of the Mandelbrot set a fractal curve. (description adapted
|
||||
* from https://en.wikipedia.org/wiki/Mandelbrot_set ) (see also
|
||||
* https://en.wikipedia.org/wiki/Plotting_algorithms_for_the_Mandelbrot_set )
|
||||
*/
|
||||
public class Mandelbrot {
|
||||
|
||||
public static void main(String[] args) {
|
||||
// Test black and white
|
||||
BufferedImage blackAndWhiteImage = getImage(800, 600, -0.6, 0, 3.2, 50, false);
|
||||
|
||||
// Pixel outside the Mandelbrot set should be white.
|
||||
assert blackAndWhiteImage.getRGB(0, 0) == new Color(255, 255, 255).getRGB();
|
||||
|
||||
// Pixel inside the Mandelbrot set should be black.
|
||||
assert blackAndWhiteImage.getRGB(400, 300) == new Color(0, 0, 0).getRGB();
|
||||
|
||||
// Test color-coding
|
||||
BufferedImage coloredImage = getImage(800, 600, -0.6, 0, 3.2, 50, true);
|
||||
|
||||
// Pixel distant to the Mandelbrot set should be red.
|
||||
assert coloredImage.getRGB(0, 0) == new Color(255, 0, 0).getRGB();
|
||||
|
||||
// Pixel inside the Mandelbrot set should be black.
|
||||
assert coloredImage.getRGB(400, 300) == new Color(0, 0, 0).getRGB();
|
||||
|
||||
// Save image
|
||||
try {
|
||||
ImageIO.write(coloredImage, "png", new File("Mandelbrot.png"));
|
||||
} catch (IOException e) {
|
||||
e.printStackTrace();
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Method to generate the image of the Mandelbrot set. Two types of coordinates are used:
|
||||
* image-coordinates that refer to the pixels and figure-coordinates that refer to the complex
|
||||
* numbers inside and outside the Mandelbrot set. The figure-coordinates in the arguments of this
|
||||
* method determine which section of the Mandelbrot set is viewed. The main area of the Mandelbrot
|
||||
* set is roughly between "-1.5 < x < 0.5" and "-1 < y < 1" in the figure-coordinates.
|
||||
*
|
||||
* @param imageWidth The width of the rendered image.
|
||||
* @param imageHeight The height of the rendered image.
|
||||
* @param figureCenterX The x-coordinate of the center of the figure.
|
||||
* @param figureCenterY The y-coordinate of the center of the figure.
|
||||
* @param figureWidth The width of the figure.
|
||||
* @param maxStep Maximum number of steps to check for divergent behavior.
|
||||
* @param useDistanceColorCoding Render in color or black and white.
|
||||
* @return The image of the rendered Mandelbrot set.
|
||||
*/
|
||||
public static BufferedImage getImage(
|
||||
int imageWidth,
|
||||
int imageHeight,
|
||||
double figureCenterX,
|
||||
double figureCenterY,
|
||||
double figureWidth,
|
||||
int maxStep,
|
||||
boolean useDistanceColorCoding) {
|
||||
if (imageWidth <= 0) {
|
||||
throw new IllegalArgumentException("imageWidth should be greater than zero");
|
||||
}
|
||||
|
||||
if (imageHeight <= 0) {
|
||||
throw new IllegalArgumentException("imageHeight should be greater than zero");
|
||||
}
|
||||
|
||||
if (maxStep <= 0) {
|
||||
throw new IllegalArgumentException("maxStep should be greater than zero");
|
||||
}
|
||||
|
||||
BufferedImage image = new BufferedImage(imageWidth, imageHeight, BufferedImage.TYPE_INT_RGB);
|
||||
double figureHeight = figureWidth / imageWidth * imageHeight;
|
||||
|
||||
// loop through the image-coordinates
|
||||
for (int imageX = 0; imageX < imageWidth; imageX++) {
|
||||
for (int imageY = 0; imageY < imageHeight; imageY++) {
|
||||
// determine the figure-coordinates based on the image-coordinates
|
||||
double figureX = figureCenterX + ((double) imageX / imageWidth - 0.5) * figureWidth;
|
||||
double figureY = figureCenterY + ((double) imageY / imageHeight - 0.5) * figureHeight;
|
||||
|
||||
double distance = getDistance(figureX, figureY, maxStep);
|
||||
|
||||
// color the corresponding pixel based on the selected coloring-function
|
||||
image.setRGB(
|
||||
imageX,
|
||||
imageY,
|
||||
useDistanceColorCoding
|
||||
? colorCodedColorMap(distance).getRGB()
|
||||
: blackAndWhiteColorMap(distance).getRGB());
|
||||
}
|
||||
}
|
||||
|
||||
return image;
|
||||
}
|
||||
|
||||
/**
|
||||
* Black and white color-coding that ignores the relative distance. The Mandelbrot set is black,
|
||||
* everything else is white.
|
||||
*
|
||||
* @param distance Distance until divergence threshold
|
||||
* @return The color corresponding to the distance.
|
||||
*/
|
||||
private static Color blackAndWhiteColorMap(double distance) {
|
||||
return distance >= 1 ? new Color(0, 0, 0) : new Color(255, 255, 255);
|
||||
}
|
||||
|
||||
/**
|
||||
* Color-coding taking the relative distance into account. The Mandelbrot set is black.
|
||||
*
|
||||
* @param distance Distance until divergence threshold.
|
||||
* @return The color corresponding to the distance.
|
||||
*/
|
||||
private static Color colorCodedColorMap(double distance) {
|
||||
if (distance >= 1) {
|
||||
return new Color(0, 0, 0);
|
||||
} else {
|
||||
// simplified transformation of HSV to RGB
|
||||
// distance determines hue
|
||||
double hue = 360 * distance;
|
||||
double saturation = 1;
|
||||
double val = 255;
|
||||
int hi = (int) (Math.floor(hue / 60)) % 6;
|
||||
double f = hue / 60 - Math.floor(hue / 60);
|
||||
|
||||
int v = (int) val;
|
||||
int p = 0;
|
||||
int q = (int) (val * (1 - f * saturation));
|
||||
int t = (int) (val * (1 - (1 - f) * saturation));
|
||||
|
||||
switch (hi) {
|
||||
case 0:
|
||||
return new Color(v, t, p);
|
||||
case 1:
|
||||
return new Color(q, v, p);
|
||||
case 2:
|
||||
return new Color(p, v, t);
|
||||
case 3:
|
||||
return new Color(p, q, v);
|
||||
case 4:
|
||||
return new Color(t, p, v);
|
||||
default:
|
||||
return new Color(v, p, q);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Return the relative distance (ratio of steps taken to maxStep) after which the complex number
|
||||
* constituted by this x-y-pair diverges. Members of the Mandelbrot set do not diverge so their
|
||||
* distance is 1.
|
||||
*
|
||||
* @param figureX The x-coordinate within the figure.
|
||||
* @param figureX The y-coordinate within the figure.
|
||||
* @param maxStep Maximum number of steps to check for divergent behavior.
|
||||
* @return The relative distance as the ratio of steps taken to maxStep.
|
||||
*/
|
||||
private static double getDistance(double figureX, double figureY, int maxStep) {
|
||||
double a = figureX;
|
||||
double b = figureY;
|
||||
int currentStep = 0;
|
||||
for (int step = 0; step < maxStep; step++) {
|
||||
currentStep = step;
|
||||
double aNew = a * a - b * b + figureX;
|
||||
b = 2 * a * b + figureY;
|
||||
a = aNew;
|
||||
|
||||
// divergence happens for all complex number with an absolute value
|
||||
// greater than 4 (= divergence threshold)
|
||||
if (a * a + b * b > 4) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
return (double) currentStep / (maxStep - 1);
|
||||
}
|
||||
}
|
Loading…
Reference in New Issue
Block a user