Add algorithm for the Mandelbrot set (#2155)

* Add Euler method (from master)

trying to avoid to prettier-error by making the commit from the master-branch

* delete file

* Add algorithm for the Mandelbrot set

* remove unnecessary import

* fix comments

* Changed variable name

* add package
This commit is contained in:
algobytewise 2021-04-24 11:55:27 +05:30 committed by GitHub
parent db86e6454a
commit 2ad3bb7199
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

192
Others/Mandelbrot.java Normal file
View File

@ -0,0 +1,192 @@
package Others;
import java.awt.*;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imageio.ImageIO;
/**
* The Mandelbrot set is the set of complex numbers "c" for which the series "z_(n+1) = z_n * z_n +
* c" does not diverge, i.e. remains bounded. Thus, a complex number "c" is a member of the
* Mandelbrot set if, when starting with "z_0 = 0" and applying the iteration repeatedly, the
* absolute value of "z_n" remains bounded for all "n > 0". Complex numbers can be written as "a +
* b*i": "a" is the real component, usually drawn on the x-axis, and "b*i" is the imaginary
* component, usually drawn on the y-axis. Most visualizations of the Mandelbrot set use a
* color-coding to indicate after how many steps in the series the numbers outside the set cross the
* divergence threshold. Images of the Mandelbrot set exhibit an elaborate and infinitely
* complicated boundary that reveals progressively ever-finer recursive detail at increasing
* magnifications, making the boundary of the Mandelbrot set a fractal curve. (description adapted
* from https://en.wikipedia.org/wiki/Mandelbrot_set ) (see also
* https://en.wikipedia.org/wiki/Plotting_algorithms_for_the_Mandelbrot_set )
*/
public class Mandelbrot {
public static void main(String[] args) {
// Test black and white
BufferedImage blackAndWhiteImage = getImage(800, 600, -0.6, 0, 3.2, 50, false);
// Pixel outside the Mandelbrot set should be white.
assert blackAndWhiteImage.getRGB(0, 0) == new Color(255, 255, 255).getRGB();
// Pixel inside the Mandelbrot set should be black.
assert blackAndWhiteImage.getRGB(400, 300) == new Color(0, 0, 0).getRGB();
// Test color-coding
BufferedImage coloredImage = getImage(800, 600, -0.6, 0, 3.2, 50, true);
// Pixel distant to the Mandelbrot set should be red.
assert coloredImage.getRGB(0, 0) == new Color(255, 0, 0).getRGB();
// Pixel inside the Mandelbrot set should be black.
assert coloredImage.getRGB(400, 300) == new Color(0, 0, 0).getRGB();
// Save image
try {
ImageIO.write(coloredImage, "png", new File("Mandelbrot.png"));
} catch (IOException e) {
e.printStackTrace();
}
}
/**
* Method to generate the image of the Mandelbrot set. Two types of coordinates are used:
* image-coordinates that refer to the pixels and figure-coordinates that refer to the complex
* numbers inside and outside the Mandelbrot set. The figure-coordinates in the arguments of this
* method determine which section of the Mandelbrot set is viewed. The main area of the Mandelbrot
* set is roughly between "-1.5 < x < 0.5" and "-1 < y < 1" in the figure-coordinates.
*
* @param imageWidth The width of the rendered image.
* @param imageHeight The height of the rendered image.
* @param figureCenterX The x-coordinate of the center of the figure.
* @param figureCenterY The y-coordinate of the center of the figure.
* @param figureWidth The width of the figure.
* @param maxStep Maximum number of steps to check for divergent behavior.
* @param useDistanceColorCoding Render in color or black and white.
* @return The image of the rendered Mandelbrot set.
*/
public static BufferedImage getImage(
int imageWidth,
int imageHeight,
double figureCenterX,
double figureCenterY,
double figureWidth,
int maxStep,
boolean useDistanceColorCoding) {
if (imageWidth <= 0) {
throw new IllegalArgumentException("imageWidth should be greater than zero");
}
if (imageHeight <= 0) {
throw new IllegalArgumentException("imageHeight should be greater than zero");
}
if (maxStep <= 0) {
throw new IllegalArgumentException("maxStep should be greater than zero");
}
BufferedImage image = new BufferedImage(imageWidth, imageHeight, BufferedImage.TYPE_INT_RGB);
double figureHeight = figureWidth / imageWidth * imageHeight;
// loop through the image-coordinates
for (int imageX = 0; imageX < imageWidth; imageX++) {
for (int imageY = 0; imageY < imageHeight; imageY++) {
// determine the figure-coordinates based on the image-coordinates
double figureX = figureCenterX + ((double) imageX / imageWidth - 0.5) * figureWidth;
double figureY = figureCenterY + ((double) imageY / imageHeight - 0.5) * figureHeight;
double distance = getDistance(figureX, figureY, maxStep);
// color the corresponding pixel based on the selected coloring-function
image.setRGB(
imageX,
imageY,
useDistanceColorCoding
? colorCodedColorMap(distance).getRGB()
: blackAndWhiteColorMap(distance).getRGB());
}
}
return image;
}
/**
* Black and white color-coding that ignores the relative distance. The Mandelbrot set is black,
* everything else is white.
*
* @param distance Distance until divergence threshold
* @return The color corresponding to the distance.
*/
private static Color blackAndWhiteColorMap(double distance) {
return distance >= 1 ? new Color(0, 0, 0) : new Color(255, 255, 255);
}
/**
* Color-coding taking the relative distance into account. The Mandelbrot set is black.
*
* @param distance Distance until divergence threshold.
* @return The color corresponding to the distance.
*/
private static Color colorCodedColorMap(double distance) {
if (distance >= 1) {
return new Color(0, 0, 0);
} else {
// simplified transformation of HSV to RGB
// distance determines hue
double hue = 360 * distance;
double saturation = 1;
double val = 255;
int hi = (int) (Math.floor(hue / 60)) % 6;
double f = hue / 60 - Math.floor(hue / 60);
int v = (int) val;
int p = 0;
int q = (int) (val * (1 - f * saturation));
int t = (int) (val * (1 - (1 - f) * saturation));
switch (hi) {
case 0:
return new Color(v, t, p);
case 1:
return new Color(q, v, p);
case 2:
return new Color(p, v, t);
case 3:
return new Color(p, q, v);
case 4:
return new Color(t, p, v);
default:
return new Color(v, p, q);
}
}
}
/**
* Return the relative distance (ratio of steps taken to maxStep) after which the complex number
* constituted by this x-y-pair diverges. Members of the Mandelbrot set do not diverge so their
* distance is 1.
*
* @param figureX The x-coordinate within the figure.
* @param figureX The y-coordinate within the figure.
* @param maxStep Maximum number of steps to check for divergent behavior.
* @return The relative distance as the ratio of steps taken to maxStep.
*/
private static double getDistance(double figureX, double figureY, int maxStep) {
double a = figureX;
double b = figureY;
int currentStep = 0;
for (int step = 0; step < maxStep; step++) {
currentStep = step;
double aNew = a * a - b * b + figureX;
b = 2 * a * b + figureY;
a = aNew;
// divergence happens for all complex number with an absolute value
// greater than 4 (= divergence threshold)
if (a * a + b * b > 4) {
break;
}
}
return (double) currentStep / (maxStep - 1);
}
}