diff --git a/Maths/Combinations.java b/Maths/Combinations.java index 0fb2437c..cc19ee90 100644 --- a/Maths/Combinations.java +++ b/Maths/Combinations.java @@ -7,6 +7,17 @@ public class Combinations { assert combinations(10, 5) == 252; assert combinations(6, 3) == 20; assert combinations(20, 5) == 15504; + + // Since, 200 is a big number its factorial will go beyond limits of long even when 200C5 can be saved in a long + // variable. So below will fail + // assert combinations(200, 5) == 2535650040l; + + assert combinationsOptimized(100, 0) == 1; + assert combinationsOptimized(1, 1) == 1; + assert combinationsOptimized(10, 5) == 252; + assert combinationsOptimized(6, 3) == 20; + assert combinationsOptimized(20, 5) == 15504; + assert combinationsOptimized(200, 5) == 2535650040l; } /** @@ -32,4 +43,32 @@ public class Combinations { public static long combinations(int n, int k) { return factorial(n) / (factorial(k) * factorial(n - k)); } + + /** + * The above method can exceed limit of long (overflow) when factorial(n) is larger than limits of long variable. + * Thus even if nCk is within range of long variable above reason can lead to incorrect result. + * This is an optimized version of computing combinations. + * Observations: + * nC(k + 1) = (n - k) * nCk / (k + 1) + * We know the value of nCk when k = 1 which is nCk = n + * Using this base value and above formula we can compute the next term nC(k+1) + * @param n + * @param k + * @return nCk + */ + public static long combinationsOptimized(int n, int k) { + if (n < 0 || k < 0) { + throw new IllegalArgumentException("n or k can't be negative"); + } + if (n < k) { + throw new IllegalArgumentException("n can't be smaller than k"); + } + // nC0 is always 1 + long solution = 1; + for(int i = 0; i < k; i++) { + long next = (n - i) * solution / (i + 1); + solution = next; + } + return solution; + } }