Add more tests (#3601)

This commit is contained in:
Debasish Biswas 2022-10-25 17:45:41 +05:30 committed by GitHub
parent 6235fd6505
commit 315e947c87
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 125 additions and 66 deletions

View File

@ -1,22 +1,39 @@
package com.thealgorithms.divideandconquer;
// Java Program to Implement Binary Exponentiation (power in log n)
/*
* Binary Exponentiation is a method to calculate a to the power of b.
* It is used to calculate a^n in O(log n) time.
*
* Reference:
* https://iq.opengenus.org/binary-exponentiation/
*/
public class BinaryExponentiation {
public static void main(String args[]) {
System.out.println(calculatePower(2, 30));
}
// Function to calculate x^y
// Time Complexity: O(logn)
// recursive function to calculate a to the power of b
public static long calculatePower(long x, long y) {
if (y == 0) {
return 1;
}
long val = calculatePower(x, y / 2);
val *= val;
if (y % 2 == 1) {
val *= x;
if (y % 2 == 0) {
return val * val;
}
return val;
return val * val * x;
}
// iterative function to calculate a to the power of b
long power(long N, long M) {
long power = N, sum = 1;
while (M > 0) {
if ((M & 1) == 1) {
sum *= power;
}
power = power * power;
M = M >> 1;
}
return sum;
}
}

View File

@ -1,10 +1,22 @@
package com.thealgorithms.divideandconquer;
// Java Program to Implement Strassen Algorithm
// Class Strassen matrix multiplication
// Java Program to Implement Strassen Algorithm for Matrix Multiplication
/*
* Uses the divide and conquer approach to multiply two matrices.
* Time Complexity: O(n^2.8074) better than the O(n^3) of the standard matrix multiplication algorithm.
* Space Complexity: O(n^2)
*
* This Matrix multiplication can be performed only on square matrices
* where n is a power of 2. Order of both of the matrices are n × n.
*
* Reference:
* https://www.tutorialspoint.com/design_and_analysis_of_algorithms/design_and_analysis_of_algorithms_strassens_matrix_multiplication.htm#:~:text=Strassen's%20Matrix%20multiplication%20can%20be,matrices%20are%20n%20%C3%97%20n.
* https://www.geeksforgeeks.org/strassens-matrix-multiplication/
*/
public class StrassenMatrixMultiplication {
// Method 1
// Function to multiply matrices
public int[][] multiply(int[][] A, int[][] B) {
int n = A.length;
@ -80,7 +92,6 @@ public class StrassenMatrixMultiplication {
return R;
}
// Method 2
// Function to subtract two matrices
public int[][] sub(int[][] A, int[][] B) {
int n = A.length;
@ -96,7 +107,6 @@ public class StrassenMatrixMultiplication {
return C;
}
// Method 3
// Function to add two matrices
public int[][] add(int[][] A, int[][] B) {
int n = A.length;
@ -112,9 +122,7 @@ public class StrassenMatrixMultiplication {
return C;
}
// Method 4
// Function to split parent matrix
// into child matrices
// Function to split parent matrix into child matrices
public void split(int[][] P, int[][] C, int iB, int jB) {
for (int i1 = 0, i2 = iB; i1 < C.length; i1++, i2++) {
for (int j1 = 0, j2 = jB; j1 < C.length; j1++, j2++) {
@ -123,9 +131,7 @@ public class StrassenMatrixMultiplication {
}
}
// Method 5
// Function to join child matrices
// into (to) parent matrix
// Function to join child matrices into (to) parent matrix
public void join(int[][] C, int[][] P, int iB, int jB) {
for (int i1 = 0, i2 = iB; i1 < C.length; i1++, i2++) {
for (int j1 = 0, j2 = jB; j1 < C.length; j1++, j2++) {
@ -134,49 +140,4 @@ public class StrassenMatrixMultiplication {
}
}
// Method 5
// Main driver method
public static void main(String[] args) {
System.out.println(
"Strassen Multiplication Algorithm Implementation For Matrix Multiplication :\n"
);
StrassenMatrixMultiplication s = new StrassenMatrixMultiplication();
// Size of matrix
// Considering size as 4 in order to illustrate
int N = 4;
// Matrix A
// Custom input to matrix
int[][] A = {
{ 1, 2, 5, 4 },
{ 9, 3, 0, 6 },
{ 4, 6, 3, 1 },
{ 0, 2, 0, 6 },
};
// Matrix B
// Custom input to matrix
int[][] B = {
{ 1, 0, 4, 1 },
{ 1, 2, 0, 2 },
{ 0, 3, 1, 3 },
{ 1, 8, 1, 2 },
};
// Matrix C computations
// Matrix C calling method to get Result
int[][] C = s.multiply(A, B);
System.out.println("\nProduct of matrices A and B : ");
// Print the output
for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++) {
System.out.print(C[i][j] + " ");
}
System.out.println();
}
}
}

View File

@ -0,0 +1,39 @@
package com.thealgorithms.divideandconquer;
import static org.junit.jupiter.api.Assertions.*;
import org.junit.jupiter.api.Test;
public class BinaryExponentiationTest {
@Test
public void testCalculatePower() {
assertEquals(1, BinaryExponentiation.calculatePower(1, 10000000));
assertEquals(1, BinaryExponentiation.calculatePower(1, 100000000));
assertEquals(1, BinaryExponentiation.calculatePower(1, 1000000000));
assertEquals(1, BinaryExponentiation.calculatePower(1, 10000000000L));
assertEquals(1, BinaryExponentiation.calculatePower(1, 100000000000L));
assertEquals(1, BinaryExponentiation.calculatePower(1, 1000000000000L));
assertEquals(1, BinaryExponentiation.calculatePower(1, 10000000000000L));
assertEquals(1, BinaryExponentiation.calculatePower(1, 100000000000000L));
assertEquals(1, BinaryExponentiation.calculatePower(1, 1000000000000000L));
assertEquals(1, BinaryExponentiation.calculatePower(1, 10000000000000000L));
assertEquals(1, BinaryExponentiation.calculatePower(1, 100000000000000000L));
}
@Test
public void testPower() {
assertEquals(1, new BinaryExponentiation().power(1, 10000000));
assertEquals(1, new BinaryExponentiation().power(1, 100000000));
assertEquals(1, new BinaryExponentiation().power(1, 1000000000));
assertEquals(1, new BinaryExponentiation().power(1, 10000000000L));
assertEquals(1, new BinaryExponentiation().power(1, 100000000000L));
assertEquals(1, new BinaryExponentiation().power(1, 1000000000000L));
assertEquals(1, new BinaryExponentiation().power(1, 10000000000000L));
assertEquals(1, new BinaryExponentiation().power(1, 100000000000000L));
assertEquals(1, new BinaryExponentiation().power(1, 1000000000000000L));
assertEquals(1, new BinaryExponentiation().power(1, 10000000000000000L));
assertEquals(1, new BinaryExponentiation().power(1, 100000000000000000L));
}
}

View File

@ -0,0 +1,42 @@
package com.thealgorithms.divideandconquer;
import static org.junit.jupiter.api.Assertions.*;
import org.junit.jupiter.api.Test;
class StrassenMatrixMultiplicationTest {
StrassenMatrixMultiplication SMM = new StrassenMatrixMultiplication();
// Strassen Matrix Multiplication can only be allplied to matrices of size 2^n
// and has to be a Square Matrix
@Test
public void StrassenMatrixMultiplicationTest2x2() {
int[][] A = { { 1, 2 }, { 3, 4 } };
int[][] B = { { 5, 6 }, { 7, 8 } };
int[][] expResult = { { 19, 22 }, { 43, 50 } };
int[][] actResult = SMM.multiply(A, B);
assertArrayEquals(expResult, actResult);
}
@Test
void StrassenMatrixMultiplicationTest4x4() {
int[][] A = { { 1, 2, 5, 4 }, { 9, 3, 0, 6 }, { 4, 6, 3, 1 }, { 0, 2, 0, 6 } };
int[][] B = { { 1, 0, 4, 1 }, { 1, 2, 0, 2 }, { 0, 3, 1, 3 }, { 1, 8, 1, 2 } };
int[][] expResult = { { 7, 51, 13, 28 }, { 18, 54, 42, 27 }, { 11, 29, 20, 27 }, { 8, 52, 6, 16 } };
int[][] actResult = SMM.multiply(A, B);
assertArrayEquals(expResult, actResult);
}
@Test
void StrassenMatrixMultiplicationTestNegetiveNumber4x4() {
int[][] A = { { 1, 2, 3, 4 }, { 5, 6, 7, 8 }, { 9, 10, 11, 12 }, { 13, 14, 15, 16 } };
int[][] B = { { 1, -2, -3, 4 }, { 4, -3, -2, 1 }, { 5, -6, -7, 8 }, { 8, -7, -6, -5 } };
int[][] expResult = { { 56, -54, -52, 10 }, { 128, -126, -124, 42 }, { 200, -198, -196, 74 },
{ 272, -270, -268, 106 } };
int[][] actResult = SMM.multiply(A, B);
assertArrayEquals(expResult, actResult);
}
}