used to find the shorthest paths among all pairs of nodes in a graph,
Floyd-Warshall algorithm is a procedure, which is used to find the shorthest (longest) paths among all pairs of nodes in a graph, which does not contain any cycles of negative lenght. The main advantage of Floyd-Warshall algorithm is its simplicity.
This commit is contained in:
parent
8b359c7f8f
commit
35a4bd314d
173
Data Structures/Graphs/FloydWarshall.java
Normal file
173
Data Structures/Graphs/FloydWarshall.java
Normal file
@ -0,0 +1,173 @@
|
||||
import java.util.Scanner;
|
||||
|
||||
|
||||
|
||||
public class FloydWarshall
|
||||
|
||||
{
|
||||
|
||||
private int distancematrix[][];
|
||||
|
||||
private int numberofvertices;
|
||||
|
||||
public static final int INFINITY = 999;
|
||||
|
||||
|
||||
|
||||
public FloydWarshall(int numberofvertices)
|
||||
|
||||
{
|
||||
|
||||
distancematrix = new int[numberofvertices + 1][numberofvertices + 1];
|
||||
|
||||
this.numberofvertices = numberofvertices;
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
||||
public void floydwarshall(int adjacencymatrix[][])
|
||||
|
||||
{
|
||||
|
||||
for (int source = 1; source <= numberofvertices; source++)
|
||||
|
||||
{
|
||||
|
||||
for (int destination = 1; destination <= numberofvertices; destination++)
|
||||
|
||||
{
|
||||
|
||||
distancematrix[source][destination] = adjacencymatrix[source][destination];
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
||||
for (int intermediate = 1; intermediate <= numberofvertices; intermediate++)
|
||||
|
||||
{
|
||||
|
||||
for (int source = 1; source <= numberofvertices; source++)
|
||||
|
||||
{
|
||||
|
||||
for (int destination = 1; destination <= numberofvertices; destination++)
|
||||
|
||||
{
|
||||
|
||||
if (distancematrix[source][intermediate] + distancematrix[intermediate][destination]
|
||||
|
||||
< distancematrix[source][destination])
|
||||
|
||||
distancematrix[source][destination] = distancematrix[source][intermediate]
|
||||
|
||||
+ distancematrix[intermediate][destination];
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
||||
for (int source = 1; source <= numberofvertices; source++)
|
||||
|
||||
System.out.print("\t" + source);
|
||||
|
||||
|
||||
|
||||
System.out.println();
|
||||
|
||||
for (int source = 1; source <= numberofvertices; source++)
|
||||
|
||||
{
|
||||
|
||||
System.out.print(source + "\t");
|
||||
|
||||
for (int destination = 1; destination <= numberofvertices; destination++)
|
||||
|
||||
{
|
||||
|
||||
System.out.print(distancematrix[source][destination] + "\t");
|
||||
|
||||
}
|
||||
|
||||
System.out.println();
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
||||
public static void main(String... arg)
|
||||
|
||||
{
|
||||
|
||||
int adjacency_matrix[][];
|
||||
|
||||
int numberofvertices;
|
||||
|
||||
|
||||
|
||||
Scanner scan = new Scanner(System.in);
|
||||
|
||||
System.out.println("Enter the number of vertices");
|
||||
|
||||
numberofvertices = scan.nextInt();
|
||||
|
||||
|
||||
|
||||
adjacency_matrix = new int[numberofvertices + 1][numberofvertices + 1];
|
||||
|
||||
System.out.println("Enter the Weighted Matrix for the graph");
|
||||
|
||||
for (int source = 1; source <= numberofvertices; source++)
|
||||
|
||||
{
|
||||
|
||||
for (int destination = 1; destination <= numberofvertices; destination++)
|
||||
|
||||
{
|
||||
|
||||
adjacency_matrix[source][destination] = scan.nextInt();
|
||||
|
||||
if (source == destination)
|
||||
|
||||
{
|
||||
|
||||
adjacency_matrix[source][destination] = 0;
|
||||
|
||||
continue;
|
||||
|
||||
}
|
||||
|
||||
if (adjacency_matrix[source][destination] == 0)
|
||||
|
||||
{
|
||||
|
||||
adjacency_matrix[source][destination] = INFINITY;
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
||||
System.out.println("The Transitive Closure of the Graph");
|
||||
|
||||
FloydWarshall floydwarshall = new FloydWarshall(numberofvertices);
|
||||
|
||||
floydwarshall.floydwarshall(adjacency_matrix);
|
||||
|
||||
scan.close();
|
||||
|
||||
}
|
||||
|
||||
}
|
Loading…
Reference in New Issue
Block a user