Cover BSTRecursive with tests (#4180)

This commit is contained in:
Albina Gimaletdinova 2023-05-06 21:10:33 +03:00 committed by GitHub
parent 89b7ee42e6
commit 3a593d5d3c
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 68 additions and 127 deletions

View File

@ -1,15 +1,17 @@
package com.thealgorithms.datastructures.trees;
import com.thealgorithms.datastructures.trees.BinaryTree.Node;
/**
*
*
* <h1>Binary Search Tree (Recursive)</h1>
*
* An implementation of BST recursively. In recursive implementation the checks
* are down the tree First root is checked if not found then its childs are
* are down the tree First root is checked if not found then its children are
* checked Binary Search Tree is a binary tree which satisfies three properties:
* left child is less than root node, right child is grater than root node, both
* left and right childs must themselves be a BST.
* left and right children must themselves be a BST.
*
* <p>
* I have made public functions as methods and to actually implement recursive
@ -31,30 +33,8 @@ public class BSTRecursive {
root = null;
}
/**
* main function for tests
*/
public static void main(String[] args) {
BSTRecursive tree = new BSTRecursive();
tree.add(5);
tree.add(10);
tree.add(9);
assert !tree.find(4) : "4 is not yet present in BST";
assert tree.find(10) : "10 should be present in BST";
tree.remove(9);
assert !tree.find(9) : "9 was just deleted from BST";
tree.remove(1);
assert !tree.find(
1
) : "Since 1 was not present so find deleting would do no change";
tree.add(20);
tree.add(70);
assert tree.find(70) : "70 was inserted but not found";
/*
Will print in following order
5 10 20 70
*/
tree.inorder();
public Node getRoot() {
return root;
}
/**
@ -82,7 +62,7 @@ public class BSTRecursive {
Node temp = node.left;
node.left = null;
node = temp;
} else { // both child are present
} else { // both children are present
Node temp = node.right;
// Find leftmost child of right subtree
while (temp.left != null) {
@ -114,60 +94,6 @@ public class BSTRecursive {
return node;
}
/**
* Recursively print Preorder traversal of the BST
*
* @param node the root node
*/
private void preOrder(Node node) {
if (node == null) {
return;
}
System.out.print(node.data + " ");
if (node.left != null) {
preOrder(node.left);
}
if (node.right != null) {
preOrder(node.right);
}
}
/**
* Recursively print Postorder travesal of BST.
*
* @param node the root node
*/
private void postOrder(Node node) {
if (node == null) {
return;
}
if (node.left != null) {
postOrder(node.left);
}
if (node.right != null) {
postOrder(node.right);
}
System.out.print(node.data + " ");
}
/**
* Recursively print Inorder traversal of BST.
*
* @param node the root node
*/
private void inOrder(Node node) {
if (node == null) {
return;
}
if (node.left != null) {
inOrder(node.left);
}
System.out.print(node.data + " ");
if (node.right != null) {
inOrder(node.right);
}
}
/**
* Serach recursively if the given value is present in BST or not.
*
@ -206,33 +132,6 @@ public class BSTRecursive {
this.root = delete(this.root, data);
}
/**
* To call inorder traversal on tree
*/
public void inorder() {
System.out.println("Inorder traversal of this tree is:");
inOrder(this.root);
System.out.println(); // for next line
}
/**
* To call postorder traversal on tree
*/
public void postorder() {
System.out.println("Postorder traversal of this tree is:");
postOrder(this.root);
System.out.println(); // for next li
}
/**
* To call preorder traversal on tree.
*/
public void preorder() {
System.out.println("Preorder traversal of this tree is:");
preOrder(this.root);
System.out.println(); // for next li
}
/**
* To check if given value is present in tree or not.
*
@ -246,23 +145,4 @@ public class BSTRecursive {
System.out.println(data + " not found.");
return false;
}
/**
* The Node class used for building binary search tree
*/
private static class Node {
int data;
Node left;
Node right;
/**
* Constructor with data as parameter
*/
Node(int d) {
data = d;
left = null;
right = null;
}
}
}

View File

@ -0,0 +1,61 @@
package com.thealgorithms.datastructures.trees;
import org.junit.jupiter.api.Assertions;
import org.junit.jupiter.api.Test;
/**
* @author Albina Gimaletdinova on 06/05/2023
*/
public class BSTRecursiveTest {
@Test
public void testBSTIsCorrectlyConstructedFromOneNode() {
BSTRecursive tree = new BSTRecursive();
tree.add(6);
Assertions.assertTrue(CheckBinaryTreeIsValidBST.isBST(tree.getRoot()));
}
@Test
public void testBSTIsCorrectlyCleanedAndEmpty() {
BSTRecursive tree = new BSTRecursive();
tree.add(6);
tree.remove(6);
tree.add(12);
tree.add(1);
tree.add(2);
tree.remove(1);
tree.remove(2);
tree.remove(12);
Assertions.assertNull(tree.getRoot());
}
@Test
public void testBSTIsCorrectlyCleanedAndNonEmpty() {
BSTRecursive tree = new BSTRecursive();
tree.add(6);
tree.remove(6);
tree.add(12);
tree.add(1);
tree.add(2);
Assertions.assertTrue(CheckBinaryTreeIsValidBST.isBST(tree.getRoot()));
}
@Test
public void testBSTIsCorrectlyConstructedFromMultipleNodes() {
BSTRecursive tree = new BSTRecursive();
tree.add(7);
tree.add(1);
tree.add(5);
tree.add(100);
tree.add(50);
Assertions.assertTrue(CheckBinaryTreeIsValidBST.isBST(tree.getRoot()));
}
}