Add DP Solution to Subset Count (#3580)
This commit is contained in:
parent
f2e0126469
commit
3ef3d761c6
@ -0,0 +1,69 @@
|
|||||||
|
package com.thealgorithms.dynamicprogramming;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Find the number of subsets present in the given array with a sum equal to target.
|
||||||
|
* Based on Solution discussed on StackOverflow(https://stackoverflow.com/questions/22891076/count-number-of-subsets-with-sum-equal-to-k)
|
||||||
|
* @author Samrat Podder(https://github.com/samratpodder)
|
||||||
|
*/
|
||||||
|
public class SubsetCount {
|
||||||
|
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Dynamic Programming Implementation.
|
||||||
|
* Method to find out the number of subsets present in the given array with a sum equal to target.
|
||||||
|
* Time Complexity is O(n*target) and Space Complexity is O(n*target)
|
||||||
|
* @param arr is the input array on which subsets are to searched
|
||||||
|
* @param target is the sum of each element of the subset taken together
|
||||||
|
*
|
||||||
|
*/
|
||||||
|
public int getCount(int[] arr, int target){
|
||||||
|
/**
|
||||||
|
* Base Cases - If target becomes zero, we have reached the required sum for the subset
|
||||||
|
* If we reach the end of the array arr then, either if target==arr[end], then we add one to the final count
|
||||||
|
* Otherwise we add 0 to the final count
|
||||||
|
*/
|
||||||
|
int n = arr.length;
|
||||||
|
int[][] dp = new int[n][target+1];
|
||||||
|
for (int i = 0; i < n; i++) {
|
||||||
|
dp[i][0] = 1;
|
||||||
|
}
|
||||||
|
if(arr[0]<=target) dp[0][arr[0]] = 1;
|
||||||
|
for(int t=1;t<=target;t++){
|
||||||
|
for (int idx = 1; idx < n; idx++) {
|
||||||
|
int notpick = dp[idx-1][t];
|
||||||
|
int pick =0;
|
||||||
|
if(arr[idx]<=t) pick+=dp[idx-1][target-t];
|
||||||
|
dp[idx][target] = pick+notpick;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return dp[n-1][target];
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/**
|
||||||
|
* This Method is a Space Optimized version of the getCount(int[], int) method and solves the same problem
|
||||||
|
* This approach is a bit better in terms of Space Used
|
||||||
|
* Time Complexity is O(n*target) and Space Complexity is O(target)
|
||||||
|
* @param arr is the input array on which subsets are to searched
|
||||||
|
* @param target is the sum of each element of the subset taken together
|
||||||
|
*/
|
||||||
|
public int getCountSO(int[] arr, int target){
|
||||||
|
int n = arr.length;
|
||||||
|
int prev[]=new int[target+1];
|
||||||
|
prev[0] =1;
|
||||||
|
if(arr[0]<=target) prev[arr[0]] = 1;
|
||||||
|
for(int ind = 1; ind<n; ind++){
|
||||||
|
int cur[]=new int[target+1];
|
||||||
|
cur[0]=1;
|
||||||
|
for(int t= 1; t<=target; t++){
|
||||||
|
int notTaken = prev[t];
|
||||||
|
int taken = 0;
|
||||||
|
if(arr[ind]<=t) taken = prev[t-arr[ind]];
|
||||||
|
cur[t]= notTaken + taken;
|
||||||
|
}
|
||||||
|
prev = cur;
|
||||||
|
}
|
||||||
|
return prev[target];
|
||||||
|
}
|
||||||
|
|
||||||
|
}
|
@ -0,0 +1,30 @@
|
|||||||
|
package com.thealgorithms.dynamicprogramming;
|
||||||
|
|
||||||
|
import static org.junit.jupiter.api.Assertions.assertEquals;
|
||||||
|
import org.junit.jupiter.api.Test;
|
||||||
|
|
||||||
|
public class SubsetCountTest {
|
||||||
|
public static SubsetCount obj = new SubsetCount();
|
||||||
|
|
||||||
|
@Test
|
||||||
|
void hasMultipleSubset(){
|
||||||
|
int[] arr = new int[]{1,2,3,3};
|
||||||
|
assertEquals(3, obj.getCount(arr, 6));
|
||||||
|
}
|
||||||
|
@Test
|
||||||
|
void singleElementSubset(){
|
||||||
|
int[] arr = new int[]{1,1,1,1};
|
||||||
|
assertEquals(4, obj.getCount(arr, 1));
|
||||||
|
}
|
||||||
|
|
||||||
|
@Test
|
||||||
|
void hasMultipleSubsetSO(){
|
||||||
|
int[] arr = new int[]{1,2,3,3};
|
||||||
|
assertEquals(3, obj.getCountSO(arr, 6));
|
||||||
|
}
|
||||||
|
@Test
|
||||||
|
void singleSubsetSO(){
|
||||||
|
int[] arr = new int[]{1,1,1,1};
|
||||||
|
assertEquals(1,obj.getCountSO(arr, 4));
|
||||||
|
}
|
||||||
|
}
|
Loading…
Reference in New Issue
Block a user