Add Shortest Job First Scheduling (#3843)

This commit is contained in:
thanoskiver 2023-01-13 21:22:45 +02:00 committed by GitHub
parent 3b6e3edbfb
commit 44c05bf7db
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 235 additions and 199 deletions

View File

@ -1,199 +0,0 @@
package com.thealgorithms.others;
/**
*
*
* <h2>Shortest job first.</h2>
*
* <p>
* Shortest job first (SJF) or shortest job next, is a scheduling policy that
* selects the waiting process with the smallest execution time to execute next
* Shortest Job first has the advantage of having minimum average waiting time
* among all scheduling algorithms. It is a Greedy Algorithm. It may cause
* starvation if shorter processes keep coming. This problem has been solved
* using the concept of aging.
*
* @author shivg7706
* @since 2018/10/27
*/
import java.util.*;
import java.util.ArrayList;
import java.util.Comparator;
import java.util.Scanner;
class Process {
public int pid;
public int arrivalTime;
public int burstTime;
public int priority;
public int turnAroundTime;
public int waitTime;
public int remainingTime;
}
class Schedule {
private int noOfProcess;
private int timer = 0;
private ArrayList<Process> processes;
private ArrayList<Process> remainingProcess;
private ArrayList<Integer> gantChart;
private float burstAll;
private Map<Integer, ArrayList<Process>> arrivals;
Schedule() {
Scanner in = new Scanner(System.in);
processes = new ArrayList<Process>();
remainingProcess = new ArrayList<Process>();
gantChart = new ArrayList<>();
arrivals = new HashMap<>();
System.out.print("Enter the no. of processes: ");
noOfProcess = in.nextInt();
System.out.println(
"Enter the arrival, burst and priority of processes"
);
for (int i = 0; i < noOfProcess; i++) {
Process p = new Process();
p.pid = i;
p.arrivalTime = in.nextInt();
p.burstTime = in.nextInt();
p.priority = in.nextInt();
p.turnAroundTime = 0;
p.waitTime = 0;
p.remainingTime = p.burstTime;
if (arrivals.get(p.arrivalTime) == null) {
arrivals.put(p.arrivalTime, new ArrayList<Process>());
}
arrivals.get(p.arrivalTime).add(p);
processes.add(p);
burstAll += p.burstTime;
}
in.close();
}
void startScheduling() {
processes.sort(
new Comparator<Process>() {
@Override
public int compare(Process a, Process b) {
return a.arrivalTime - b.arrivalTime;
}
}
);
while (!(arrivals.size() == 0 && remainingProcess.size() == 0)) {
removeFinishedProcess();
if (arrivals.get(timer) != null) {
remainingProcess.addAll(arrivals.get(timer));
arrivals.remove(timer);
}
remainingProcess.sort(
new Comparator<Process>() {
private int alpha = 6;
private int beta = 1;
@Override
public int compare(Process a, Process b) {
int aRem = a.remainingTime;
int bRem = b.remainingTime;
int aprior = a.priority;
int bprior = b.priority;
return (
(alpha * aRem + beta * aprior) -
(alpha * bRem + beta * bprior)
);
}
}
);
int k = timeElapsed(timer);
ageing(k);
timer++;
}
System.out.println("Total time required: " + (timer - 1));
}
void removeFinishedProcess() {
ArrayList<Integer> completed = new ArrayList<Integer>();
for (int i = 0; i < remainingProcess.size(); i++) {
if (remainingProcess.get(i).remainingTime == 0) {
completed.add(i);
}
}
for (int i = 0; i < completed.size(); i++) {
int pid = remainingProcess.get(completed.get(i)).pid;
processes.get(pid).waitTime =
remainingProcess.get(completed.get(i)).waitTime;
remainingProcess.remove(remainingProcess.get(completed.get(i)));
}
}
public int timeElapsed(int i) {
if (!remainingProcess.isEmpty()) {
gantChart.add(i, remainingProcess.get(0).pid);
remainingProcess.get(0).remainingTime--;
return 1;
}
return 0;
}
public void ageing(int k) {
for (int i = k; i < remainingProcess.size(); i++) {
remainingProcess.get(i).waitTime++;
if (remainingProcess.get(i).waitTime % 7 == 0) {
remainingProcess.get(i).priority--;
}
}
}
public void solve() {
System.out.println("Gant chart ");
for (int i = 0; i < gantChart.size(); i++) {
System.out.print(gantChart.get(i) + " ");
}
System.out.println();
float waitTimeTot = 0;
float tatTime = 0;
for (int i = 0; i < noOfProcess; i++) {
processes.get(i).turnAroundTime =
processes.get(i).waitTime + processes.get(i).burstTime;
waitTimeTot += processes.get(i).waitTime;
tatTime += processes.get(i).turnAroundTime;
System.out.println(
"Process no.: " +
i +
" Wait time: " +
processes.get(i).waitTime +
" Turn Around Time: " +
processes.get(i).turnAroundTime
);
}
System.out.println(
"Average Waiting Time: " + waitTimeTot / noOfProcess
);
System.out.println("Average TAT Time: " + tatTime / noOfProcess);
System.out.println("Throughput: " + (float) noOfProcess / (timer - 1));
}
}
public class SJF {
public static void main(String[] args) {
Schedule s = new Schedule();
s.startScheduling();
s.solve();
}
}

View File

@ -0,0 +1,115 @@
package com.thealgorithms.scheduling;
import com.thealgorithms.devutils.entities.ProcessDetails;
import java.util.ArrayList;
/**
* Implementation of Shortest Job First Algorithm: The algorithm allows the waiting process with the minimal burst time to be executed first.
* see more here: https://www.guru99.com/shortest-job-first-sjf-scheduling.html
*/
public class SJFScheduling {
protected ArrayList<ProcessDetails> processes;
protected ArrayList<String>schedule ;
/**
* a simple constructor
* @param processes a list of processes the user wants to schedule
* it also sorts the processes based on the time of their arrival
*/
SJFScheduling(final ArrayList<ProcessDetails> processes) {
this.processes = processes;
schedule=new ArrayList<>();
sortByArrivalTime();
}
protected void sortByArrivalTime() {
int size=processes.size(),i,j;
ProcessDetails temp;
for(i=0;i<size;i++)
{
for(j=i+1;j<size-1;j++)
{
if(processes.get(j).getArrivalTime()>processes.get(j+1).getArrivalTime())
{
temp=processes.get(j);
processes.set(j,processes.get(j+1));
processes.set(j+1,temp);
}
}
}
}
/**
* this functions returns the order of the executions
*/
public void scheduleProcesses() {
ArrayList<ProcessDetails> ready=new ArrayList<>();
int size = processes.size(),runtime,time=0;
int executed=0,j,k=0;
ProcessDetails running;
if (size == 0) {
return;
}
while(executed<size)
{
while(k<size && processes.get(k).getArrivalTime()<=time)//here we find the processes that have arrived.
{
ready.add(processes.get(k));
k++;
}
running=findShortestJob(ready);
if(running==null)
{
time++;
}
else {
runtime = running.getBurstTime();
for (j = 0; j < runtime; j++) {
time++;}
schedule.add(running.getProcessId());
ready.remove(running);
executed++;
}
}
}
/**
* this function evaluates the shortest job of all the ready processes (based on a process burst time)
* @param ReadyProcesses an array list of ready processes
* @return returns the process' with the shortest burst time OR NULL if there are no ready processes
*/
private ProcessDetails findShortestJob(ArrayList<ProcessDetails> ReadyProcesses) {
if (ReadyProcesses.isEmpty()){
return null;
}
int i,size = ReadyProcesses.size();
int minBurstTime = ReadyProcesses.get(0).getBurstTime(), temp, positionOfShortestJob = 0;
for (i = 1; i < size; i++) {
temp = ReadyProcesses.get(i).getBurstTime();
if (minBurstTime > temp ) {
minBurstTime = temp;
positionOfShortestJob = i;
}
}
return ReadyProcesses.get(positionOfShortestJob);
}
}

View File

@ -0,0 +1,120 @@
package com.thealgorithms.scheduling;
import com.thealgorithms.devutils.entities.ProcessDetails;
import org.junit.jupiter.api.Test;
import java.util.ArrayList;
import static org.junit.jupiter.api.Assertions.*;
class SJFSchedulingTest {
private ArrayList<ProcessDetails> process;
void initialisation0()
{
process=new ArrayList<>();
process.add(new ProcessDetails("1",0 ,6));
process.add(new ProcessDetails("2",1,2));
}
void initialisation1()
{
process=new ArrayList<>();
process.add(new ProcessDetails("1",0 ,6));
process.add(new ProcessDetails("2",1,2));
process.add(new ProcessDetails("3",4 ,3));
process.add(new ProcessDetails("4",3,1));
process.add(new ProcessDetails("5",6 ,4));
process.add(new ProcessDetails("6",5,5));
}
void initialisation2()
{
process=new ArrayList<>();
process.add(new ProcessDetails("1",0 ,3));
process.add(new ProcessDetails("2",1,2));
process.add(new ProcessDetails("3",2 ,1));
}
void initialisation3(){
process=new ArrayList<>();
process.add(new ProcessDetails("1",0 ,3));
process.add(new ProcessDetails("2",5,2));
process.add(new ProcessDetails("3",9 ,1));
}
@Test
void constructor()
{
initialisation0();
SJFScheduling a=new SJFScheduling(process);
assertEquals( 6,a.processes.get(0).getBurstTime());
assertEquals( 2,a.processes.get(1).getBurstTime());
}
@Test
void sort()
{
initialisation1();
SJFScheduling a=new SJFScheduling(process);
a.sortByArrivalTime();
assertEquals("1",a.processes.get(0).getProcessId());
assertEquals("2",a.processes.get(1).getProcessId());
assertEquals("3",a.processes.get(3).getProcessId());
assertEquals("4",a.processes.get(2).getProcessId());
assertEquals("5",a.processes.get(5).getProcessId());
assertEquals("6",a.processes.get(4).getProcessId());
}
@Test
void scheduling(){
initialisation1();
SJFScheduling a=new SJFScheduling(process);
a.scheduleProcesses();
assertEquals( "1" , a.schedule.get(0));
assertEquals( "4" , a.schedule.get(1));
assertEquals( "2" , a.schedule.get(2));
assertEquals( "3" , a.schedule.get(3));
assertEquals("5" , a.schedule.get(4));
assertEquals( "6", a.schedule.get(5));
}
@Test
void schedulingOf_TwoProcesses(){
initialisation0();
SJFScheduling a=new SJFScheduling(process);
a.scheduleProcesses();
assertEquals( "1" , a.schedule.get(0));
assertEquals( "2" , a.schedule.get(1));
}
@Test
void schedulingOfA_ShortestJobArrivingLast(){
initialisation2();
SJFScheduling a=new SJFScheduling(process);
a.scheduleProcesses();
assertEquals( "1" , a.schedule.get(0));
assertEquals( "3" , a.schedule.get(1));
assertEquals( "2" , a.schedule.get(2));
}
@Test
void scheduling_WithProcessesNotComingBackToBack(){
initialisation3();
SJFScheduling a=new SJFScheduling(process);
a.scheduleProcesses();
assertEquals( "1" , a.schedule.get(0));
assertEquals( "2" , a.schedule.get(1));
assertEquals( "3" , a.schedule.get(2));
}
@Test
void schedulingOf_nothing(){
process=new ArrayList<>();
SJFScheduling a=new SJFScheduling(process);
a.scheduleProcesses();
assertTrue( a.schedule.isEmpty());
}
}