Add WelshPowell (Graph Colouring) (#5034)

* Welsh Powell Algorithm + Test


---------

Co-authored-by: Piotr Idzik <65706193+vil02@users.noreply.github.com>
This commit is contained in:
straf10 2024-02-12 21:48:07 +02:00 committed by GitHub
parent 55cc562d64
commit 47a9b1b647
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
2 changed files with 237 additions and 0 deletions

View File

@ -0,0 +1,113 @@
package com.thealgorithms.datastructures.graphs;
import java.util.Arrays;
import java.util.Comparator;
import java.util.HashSet;
import java.util.stream.IntStream;
/*
* The Welsh-Powell algorithm is a graph coloring algorithm
* used for coloring a graph with the minimum number of colors.
* https://en.wikipedia.org/wiki/Graph_coloring
*/
public final class WelshPowell {
private static final int BLANK_COLOR = -1; // Representing uncolored state
private WelshPowell() {
}
static class Graph {
private HashSet<Integer>[] adjacencyLists;
private Graph(int vertices) {
if (vertices < 0) {
throw new IllegalArgumentException("Number of vertices cannot be negative");
}
adjacencyLists = new HashSet[vertices];
Arrays.setAll(adjacencyLists, i -> new HashSet<>());
}
private void addEdge(int nodeA, int nodeB) {
validateVertex(nodeA);
validateVertex(nodeB);
if (nodeA == nodeB) {
throw new IllegalArgumentException("Self-loops are not allowed");
}
adjacencyLists[nodeA].add(nodeB);
adjacencyLists[nodeB].add(nodeA);
}
private void validateVertex(int vertex) {
if (vertex < 0 || vertex >= getNumVertices()) {
throw new IllegalArgumentException("Vertex " + vertex + " is out of bounds");
}
}
HashSet<Integer> getAdjacencyList(int vertex) {
return adjacencyLists[vertex];
}
int getNumVertices() {
return adjacencyLists.length;
}
}
public static Graph makeGraph(int numberOfVertices, int[][] listOfEdges) {
Graph graph = new Graph(numberOfVertices);
for (int[] edge : listOfEdges) {
if (edge.length != 2) {
throw new IllegalArgumentException("Edge array must have exactly two elements");
}
graph.addEdge(edge[0], edge[1]);
}
return graph;
}
public static int[] findColoring(Graph graph) {
int[] colors = initializeColors(graph.getNumVertices());
Integer[] sortedVertices = getSortedNodes(graph);
for (int vertex : sortedVertices) {
if (isBlank(colors[vertex])) {
boolean[] usedColors = computeUsedColors(graph, vertex, colors);
final var newColor = firstUnusedColor(usedColors);
colors[vertex] = newColor;
Arrays.stream(sortedVertices).forEach(otherVertex -> {
if (isBlank(colors[otherVertex]) && !isAdjacentToColored(graph, otherVertex, colors)) {
colors[otherVertex] = newColor;
}
});
}
}
return colors;
}
private static boolean isBlank(int color) {
return color == BLANK_COLOR;
}
private static boolean isAdjacentToColored(Graph graph, int vertex, int[] colors) {
return graph.getAdjacencyList(vertex).stream().anyMatch(otherVertex -> !isBlank(colors[otherVertex]));
}
private static int[] initializeColors(int numberOfVertices) {
int[] colors = new int[numberOfVertices];
Arrays.fill(colors, BLANK_COLOR);
return colors;
}
private static Integer[] getSortedNodes(final Graph graph) {
return IntStream.range(0, graph.getNumVertices()).boxed().sorted(Comparator.comparingInt(v -> - graph.getAdjacencyList(v).size())).toArray(Integer[] ::new);
}
private static boolean[] computeUsedColors(final Graph graph, final int vertex, final int[] colors) {
boolean[] usedColors = new boolean[graph.getNumVertices()];
graph.getAdjacencyList(vertex).stream().map(neighbor -> colors[neighbor]).filter(color -> !isBlank(color)).forEach(color -> usedColors[color] = true);
return usedColors;
}
private static int firstUnusedColor(boolean[] usedColors) {
return IntStream.range(0, usedColors.length).filter(color -> !usedColors[color]).findFirst().getAsInt();
}
}

View File

@ -0,0 +1,124 @@
package com.thealgorithms.datastructures.graphs;
import static org.junit.jupiter.api.Assertions.assertEquals;
import static org.junit.jupiter.api.Assertions.assertThrows;
import static org.junit.jupiter.api.Assertions.assertTrue;
import com.thealgorithms.datastructures.graphs.WelshPowell.Graph;
import java.util.Arrays;
import org.junit.jupiter.api.Test;
class WelshPowellTest {
@Test
void testSimpleGraph() {
final var graph = WelshPowell.makeGraph(4, new int[][] {{0, 1}, {1, 2}, {2, 3}});
int[] colors = WelshPowell.findColoring(graph);
assertTrue(isColoringValid(graph, colors));
assertEquals(2, countDistinctColors(colors));
}
@Test
void testDisconnectedGraph() {
final var graph = WelshPowell.makeGraph(3, new int[][] {}); // No edges
int[] colors = WelshPowell.findColoring(graph);
assertTrue(isColoringValid(graph, colors));
assertEquals(1, countDistinctColors(colors));
}
@Test
void testCompleteGraph() {
final var graph = WelshPowell.makeGraph(3, new int[][] {{0, 1}, {1, 2}, {2, 0}});
int[] colors = WelshPowell.findColoring(graph);
assertTrue(isColoringValid(graph, colors));
assertEquals(3, countDistinctColors(colors));
}
// The following test originates from the following website : https://www.geeksforgeeks.org/welsh-powell-graph-colouring-algorithm/
@Test
void testComplexGraph() {
int[][] edges = {
{0, 7}, // A-H
{0, 1}, // A-B
{1, 3}, // B-D
{2, 3}, // C-D
{3, 8}, // D-I
{3, 10}, // D-K
{4, 10}, // E-K
{4, 5}, // E-F
{5, 6}, // F-G
{6, 10}, // G-K
{6, 7}, // G-H
{7, 8}, // H-I
{7, 9}, // H-J
{7, 10}, // H-K
{8, 9}, // I-J
{9, 10}, // J-K
};
final var graph = WelshPowell.makeGraph(11, edges); // 11 vertices from A (0) to K (10)
int[] colors = WelshPowell.findColoring(graph);
assertTrue(isColoringValid(graph, colors), "The coloring should be valid with no adjacent vertices sharing the same color.");
assertEquals(3, countDistinctColors(colors), "The chromatic number of the graph should be 3.");
}
@Test
void testNegativeVertices() {
assertThrows(IllegalArgumentException.class, () -> { WelshPowell.makeGraph(-1, new int[][] {}); }, "Number of vertices cannot be negative");
}
@Test
void testSelfLoop() {
assertThrows(IllegalArgumentException.class, () -> { WelshPowell.makeGraph(3, new int[][] {{0, 0}}); }, "Self-loops are not allowed");
}
@Test
void testInvalidVertex() {
assertThrows(IllegalArgumentException.class, () -> { WelshPowell.makeGraph(3, new int[][] {{0, 3}}); }, "Vertex out of bounds");
assertThrows(IllegalArgumentException.class, () -> { WelshPowell.makeGraph(3, new int[][] {{0, -1}}); }, "Vertex out of bounds");
}
@Test
void testInvalidEdgeArray() {
assertThrows(IllegalArgumentException.class, () -> { WelshPowell.makeGraph(3, new int[][] {{0}}); }, "Edge array must have exactly two elements");
}
@Test
void testWithPreColoredVertex() {
// Create a linear graph with 4 vertices and edges connecting them in sequence
final var graph = WelshPowell.makeGraph(4, new int[][] {{0, 1}, {1, 2}, {2, 3}});
// Apply the Welsh-Powell coloring algorithm to the graph
int[] colors = WelshPowell.findColoring(graph);
// Validate that the coloring is correct (no two adjacent vertices have the same color)
assertTrue(isColoringValid(graph, colors));
// Check if the algorithm has used at least 2 colors (expected for a linear graph)
assertTrue(countDistinctColors(colors) >= 2);
// Verify that all vertices have been assigned a color
for (int color : colors) {
assertTrue(color >= 0);
}
}
private boolean isColoringValid(Graph graph, int[] colors) {
if (Arrays.stream(colors).anyMatch(n -> n < 0)) {
return false;
}
for (int i = 0; i < graph.getNumVertices(); i++) {
for (int neighbor : graph.getAdjacencyList(i)) {
if (i != neighbor && colors[i] == colors[neighbor]) {
return false; // Adjacent vertices have the same color
}
}
}
return true; // No adjacent vertices share the same color
}
private int countDistinctColors(int[] colors) {
return (int) Arrays.stream(colors).distinct().count();
}
}