remove ProjectEuler
This commit is contained in:
parent
ea123111d9
commit
4ba52c1c83
11
DIRECTORY.md
11
DIRECTORY.md
@ -220,17 +220,6 @@
|
||||
* [TwoPointers](https://github.com/TheAlgorithms/Java/blob/master/Others/TwoPointers.java)
|
||||
* [WorstFit](https://github.com/TheAlgorithms/Java/blob/master/Others/WorstFit.java)
|
||||
|
||||
## ProjectEuler
|
||||
* [Problem01](https://github.com/TheAlgorithms/Java/blob/master/ProjectEuler/Problem01.java)
|
||||
* [Problem02](https://github.com/TheAlgorithms/Java/blob/master/ProjectEuler/Problem02.java)
|
||||
* [Problem03](https://github.com/TheAlgorithms/Java/blob/master/ProjectEuler/Problem03.java)
|
||||
* [Problem04](https://github.com/TheAlgorithms/Java/blob/master/ProjectEuler/Problem04.java)
|
||||
* [Problem06](https://github.com/TheAlgorithms/Java/blob/master/ProjectEuler/Problem06.java)
|
||||
* [Problem07](https://github.com/TheAlgorithms/Java/blob/master/ProjectEuler/Problem07.java)
|
||||
* [Problem09](https://github.com/TheAlgorithms/Java/blob/master/ProjectEuler/Problem09.java)
|
||||
* [Problem10](https://github.com/TheAlgorithms/Java/blob/master/ProjectEuler/Problem10.java)
|
||||
* [Problem12](https://github.com/TheAlgorithms/Java/blob/master/ProjectEuler/Problem12.java)
|
||||
|
||||
## Searches
|
||||
* [BinarySearch](https://github.com/TheAlgorithms/Java/blob/master/Searches/BinarySearch.java)
|
||||
* [InterpolationSearch](https://github.com/TheAlgorithms/Java/blob/master/Searches/InterpolationSearch.java)
|
||||
|
@ -1,51 +0,0 @@
|
||||
package ProjectEuler;
|
||||
|
||||
/**
|
||||
* If we list all the natural numbers below 10 that are multiples of 3 or 5, we get 3, 5, 6 and 9.
|
||||
* The sum of these multiples is 23.
|
||||
*
|
||||
* <p>Find the sum of all the multiples of 3 or 5 below 1000.
|
||||
*
|
||||
* <p>Link: https://projecteuler.net/problem=1
|
||||
*/
|
||||
public class Problem01 {
|
||||
public static void main(String[] args) {
|
||||
int[][] testNumber = {
|
||||
{3, 0},
|
||||
{4, 3},
|
||||
{10, 23},
|
||||
{1000, 233168},
|
||||
{-1, 0}
|
||||
};
|
||||
|
||||
for (int[] ints : testNumber) {
|
||||
assert solution1(ints[0]) == ints[1];
|
||||
assert solution2(ints[0]) == ints[1];
|
||||
}
|
||||
}
|
||||
|
||||
private static int solution1(int n) {
|
||||
int sum = 0;
|
||||
for (int i = 3; i < n; ++i) {
|
||||
if (i % 3 == 0 || i % 5 == 0) {
|
||||
sum += i;
|
||||
}
|
||||
}
|
||||
return sum;
|
||||
}
|
||||
|
||||
private static int solution2(int n) {
|
||||
int sum = 0;
|
||||
|
||||
int terms = (n - 1) / 3;
|
||||
sum += terms * (6 + (terms - 1) * 3) / 2;
|
||||
|
||||
terms = (n - 1) / 5;
|
||||
sum += terms * (10 + (terms - 1) * 5) / 2;
|
||||
|
||||
terms = (n - 1) / 15;
|
||||
sum -= terms * (30 + (terms - 1) * 15) / 2;
|
||||
|
||||
return sum;
|
||||
}
|
||||
}
|
@ -1,43 +0,0 @@
|
||||
package ProjectEuler;
|
||||
|
||||
/**
|
||||
* Each new term in the Fibonacci sequence is generated by adding the previous two terms. By
|
||||
* starting with 1 and 2, the first 10 terms will be:
|
||||
*
|
||||
* <p>1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ...
|
||||
*
|
||||
* <p>By considering the terms in the Fibonacci sequence whose values do not exceed four million,
|
||||
* find the sum of the even-valued terms.
|
||||
*
|
||||
* <p>Link: https://projecteuler.net/problem=2
|
||||
*/
|
||||
public class Problem02 {
|
||||
public static void main(String[] args) {
|
||||
int[][] testNumbers = {
|
||||
{10, 10}, /* 2 + 8 == 10 */
|
||||
{15, 10}, /* 2 + 8 == 10 */
|
||||
{2, 2},
|
||||
{1, 0},
|
||||
{89, 44} /* 2 + 8 + 34 == 44 */
|
||||
};
|
||||
|
||||
for (int[] ints : testNumbers) {
|
||||
assert solution1(ints[0]) == ints[1];
|
||||
}
|
||||
}
|
||||
|
||||
private static int solution1(int n) {
|
||||
int sum = 0;
|
||||
int first = 1;
|
||||
int second = 2;
|
||||
while (second <= n) {
|
||||
if (second % 2 == 0) {
|
||||
sum += second;
|
||||
}
|
||||
int temp = first + second;
|
||||
first = second;
|
||||
second = temp;
|
||||
}
|
||||
return sum;
|
||||
}
|
||||
}
|
@ -1,62 +0,0 @@
|
||||
package ProjectEuler;
|
||||
|
||||
/**
|
||||
* The prime factors of 13195 are 5, 7, 13 and 29.
|
||||
*
|
||||
* <p>What is the largest prime factor of the number 600851475143 ?
|
||||
*
|
||||
* <p>Link: https://projecteuler.net/problem=3
|
||||
*/
|
||||
public class Problem03 {
|
||||
|
||||
/**
|
||||
* Checks if a number is prime or not
|
||||
*
|
||||
* @param n the number
|
||||
* @return {@code true} if {@code n} is prime
|
||||
*/
|
||||
public static boolean isPrime(int n) {
|
||||
if (n == 2) {
|
||||
return true;
|
||||
}
|
||||
if (n < 2 || n % 2 == 0) {
|
||||
return false;
|
||||
}
|
||||
for (int i = 3, limit = (int) Math.sqrt(n); i <= limit; i += 2) {
|
||||
if (n % i == 0) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
/**
|
||||
* Calculate all the prime factors of a number and return the largest
|
||||
*
|
||||
* @param n integer number
|
||||
* @return the maximum prime factor of the given number
|
||||
*/
|
||||
static long maxPrimeFactor(long n) {
|
||||
for (int i = 2; i < n / 2; i++) {
|
||||
if (isPrime(i))
|
||||
while (n % i == 0) {
|
||||
n /= i;
|
||||
}
|
||||
}
|
||||
return n;
|
||||
}
|
||||
|
||||
public static void main(String[] args) {
|
||||
int[][] testNumbers = {
|
||||
{87, 29},
|
||||
{10, 5},
|
||||
{21, 7},
|
||||
{657, 73},
|
||||
{777, 37}
|
||||
};
|
||||
for (int[] num : testNumbers) {
|
||||
assert Problem03.maxPrimeFactor(num[0]) == num[1];
|
||||
}
|
||||
assert Problem03.maxPrimeFactor(600851475143L) == 6857;
|
||||
}
|
||||
}
|
@ -1,41 +0,0 @@
|
||||
package ProjectEuler;
|
||||
|
||||
/**
|
||||
* A palindromic number reads the same both ways. The largest palindrome made from the product of
|
||||
* two 2-digit numbers is 9009 = 91 × 99.
|
||||
*
|
||||
* <p>Find the largest palindrome made from the product of two 3-digit numbers.
|
||||
*
|
||||
* <p>link: https://projecteuler.net/problem=4
|
||||
*/
|
||||
public class Problem04 {
|
||||
public static void main(String[] args) {
|
||||
|
||||
assert solution1(10000) == -1;
|
||||
assert solution1(20000) == 19591; /* 19591 == 143*137 */
|
||||
assert solution1(30000) == 29992; /* 29992 == 184*163 */
|
||||
assert solution1(40000) == 39893; /* 39893 == 287*139 */
|
||||
assert solution1(50000) == 49894; /* 49894 == 494*101 */
|
||||
assert solution1(60000) == 59995; /* 59995 == 355*169 */
|
||||
assert solution1(70000) == 69996; /* 69996 == 614*114 */
|
||||
assert solution1(80000) == 79897; /* 79897 == 733*109 */
|
||||
assert solution1(90000) == 89798; /* 89798 == 761*118 */
|
||||
assert solution1(100000) == 99999; /* 100000 == 813*123 */
|
||||
}
|
||||
|
||||
private static int solution1(int n) {
|
||||
for (int i = n - 1; i >= 10000; --i) {
|
||||
String strNumber = String.valueOf(i);
|
||||
|
||||
/* Test if strNumber is palindrome */
|
||||
if (new StringBuilder(strNumber).reverse().toString().equals(strNumber)) {
|
||||
for (int divisor = 999; divisor >= 100; --divisor) {
|
||||
if (i % divisor == 0 && String.valueOf(i / divisor).length() == 3) {
|
||||
return i;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
return -1; /* not found */
|
||||
}
|
||||
}
|
@ -1,42 +0,0 @@
|
||||
package ProjectEuler;
|
||||
|
||||
/**
|
||||
* The sum of the squares of the first ten natural numbers is, 1^2 + 2^2 + ... + 10^2 = 385 The
|
||||
* square of the sum of the first ten natural numbers is, (1 + 2 + ... + 10)^2 = 552 = 3025 Hence
|
||||
* the difference between the sum of the squares of the first ten natural numbers and the square of
|
||||
* the sum is 3025 − 385 = 2640. Find the difference between the sum of the squares of the first N
|
||||
* natural numbers and the square of the sum.
|
||||
*
|
||||
* <p>link: https://projecteuler.net/problem=6
|
||||
*/
|
||||
public class Problem06 {
|
||||
public static void main(String[] args) {
|
||||
int[][] testNumbers = {
|
||||
{10, 2640},
|
||||
{15, 13160},
|
||||
{20, 41230},
|
||||
{50, 1582700}
|
||||
};
|
||||
|
||||
for (int[] testNumber : testNumbers) {
|
||||
assert solution1(testNumber[0]) == testNumber[1]
|
||||
&& solutions2(testNumber[0]) == testNumber[1];
|
||||
}
|
||||
}
|
||||
|
||||
private static int solution1(int n) {
|
||||
int sum1 = 0;
|
||||
int sum2 = 0;
|
||||
for (int i = 1; i <= n; ++i) {
|
||||
sum1 += i * i;
|
||||
sum2 += i;
|
||||
}
|
||||
return sum2 * sum2 - sum1;
|
||||
}
|
||||
|
||||
private static int solutions2(int n) {
|
||||
int sumOfSquares = n * (n + 1) * (2 * n + 1) / 6;
|
||||
int squareOfSum = (int) Math.pow((n * (n + 1) / 2.0), 2);
|
||||
return squareOfSum - sumOfSquares;
|
||||
}
|
||||
}
|
@ -1,60 +0,0 @@
|
||||
package ProjectEuler;
|
||||
|
||||
/**
|
||||
* By listing the first six prime numbers: 2, 3, 5, 7, 11, and 13, we can see that the 6th prime is
|
||||
* 13.
|
||||
*
|
||||
* <p>What is the 10 001st prime number?
|
||||
*
|
||||
* <p>link: https://projecteuler.net/problem=7
|
||||
*/
|
||||
public class Problem07 {
|
||||
public static void main(String[] args) {
|
||||
int[][] testNumbers = {
|
||||
{1, 2},
|
||||
{2, 3},
|
||||
{3, 5},
|
||||
{4, 7},
|
||||
{5, 11},
|
||||
{6, 13},
|
||||
{20, 71},
|
||||
{50, 229},
|
||||
{100, 541}
|
||||
};
|
||||
for (int[] number : testNumbers) {
|
||||
assert solution1(number[0]) == number[1];
|
||||
}
|
||||
}
|
||||
|
||||
/***
|
||||
* Checks if a number is prime or not
|
||||
* @param number the number
|
||||
* @return {@code true} if {@code number} is prime
|
||||
*/
|
||||
private static boolean isPrime(int number) {
|
||||
if (number == 2) {
|
||||
return true;
|
||||
}
|
||||
if (number < 2 || number % 2 == 0) {
|
||||
return false;
|
||||
}
|
||||
for (int i = 3, limit = (int) Math.sqrt(number); i <= limit; i += 2) {
|
||||
if (number % i == 0) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
private static int solution1(int n) {
|
||||
int count = 0;
|
||||
int number = 1;
|
||||
|
||||
while (count != n) {
|
||||
if (isPrime(++number)) {
|
||||
count++;
|
||||
}
|
||||
}
|
||||
return number;
|
||||
}
|
||||
}
|
@ -1,28 +0,0 @@
|
||||
package ProjectEuler;
|
||||
|
||||
/**
|
||||
* A Pythagorean triplet is a set of three natural numbers, a < b < c, for which,
|
||||
*
|
||||
* <p>a^2 + b^2 = c^2 For example, 3^2 + 4^2 = 9 + 16 = 25 = 5^2.
|
||||
*
|
||||
* <p>There exists exactly one Pythagorean triplet for which a + b + c = 1000. Find the product abc.
|
||||
*
|
||||
* <p>link: https://projecteuler.net/problem=9
|
||||
*/
|
||||
public class Problem09 {
|
||||
public static void main(String[] args) {
|
||||
assert solution1() == 31875000;
|
||||
}
|
||||
|
||||
private static int solution1() {
|
||||
for (int i = 0; i <= 300; ++i) {
|
||||
for (int j = 0; j <= 400; ++j) {
|
||||
int k = 1000 - i - j;
|
||||
if (i * i + j * j == k * k) {
|
||||
return i * j * k;
|
||||
}
|
||||
}
|
||||
}
|
||||
return -1; /* should not happen */
|
||||
}
|
||||
}
|
@ -1,55 +0,0 @@
|
||||
package ProjectEuler;
|
||||
|
||||
/**
|
||||
* The sum of the primes below 10 is 2 + 3 + 5 + 7 = 17.
|
||||
*
|
||||
* <p>Find the sum of all the primes below two million.
|
||||
*
|
||||
* <p>link: https://projecteuler.net/problem=10
|
||||
*/
|
||||
public class Problem10 {
|
||||
public static void main(String[] args) {
|
||||
long[][] testNumbers = {
|
||||
{2000000, 142913828922L},
|
||||
{10000, 5736396},
|
||||
{5000, 1548136},
|
||||
{1000, 76127},
|
||||
{10, 17},
|
||||
{7, 10}
|
||||
};
|
||||
|
||||
for (long[] testNumber : testNumbers) {
|
||||
assert solution1(testNumber[0]) == testNumber[1];
|
||||
}
|
||||
}
|
||||
|
||||
/***
|
||||
* Checks if a number is prime or not
|
||||
* @param n the number
|
||||
* @return {@code true} if {@code n} is prime
|
||||
*/
|
||||
private static boolean isPrime(int n) {
|
||||
if (n == 2) {
|
||||
return true;
|
||||
}
|
||||
if (n < 2 || n % 2 == 0) {
|
||||
return false;
|
||||
}
|
||||
for (int i = 3, limit = (int) Math.sqrt(n); i <= limit; i += 2) {
|
||||
if (n % i == 0) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
private static long solution1(long n) {
|
||||
long sum = 0;
|
||||
for (int i = 2; i < n; ++i) {
|
||||
if (isPrime(i)) {
|
||||
sum += i;
|
||||
}
|
||||
}
|
||||
return sum;
|
||||
}
|
||||
}
|
@ -1,54 +0,0 @@
|
||||
package ProjectEuler;
|
||||
/**
|
||||
* The sequence of triangle numbers is generated by adding the natural numbers. So the 7th triangle
|
||||
* number would be 1 + 2 + 3 + 4 + 5 + 6 + 7 = 28. The first ten terms would be:
|
||||
*
|
||||
* <p>1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ...
|
||||
*
|
||||
* <p>Let us list the factors of the first seven triangle numbers:
|
||||
*
|
||||
* <p>1: 1 3: 1,3 6: 1,2,3,6 10: 1,2,5,10 15: 1,3,5,15 21: 1,3,7,21 28: 1,2,4,7,14,28 We can see
|
||||
* that 28 is the first triangle number to have over five divisors.
|
||||
*
|
||||
* <p>What is the value of the first triangle number to have over five hundred divisors?
|
||||
*
|
||||
* <p>link: https://projecteuler.net/problem=12
|
||||
*/
|
||||
public class Problem12 {
|
||||
|
||||
/** Driver Code */
|
||||
public static void main(String[] args) {
|
||||
assert solution1(500) == 76576500;
|
||||
}
|
||||
|
||||
/* returns the nth triangle number; that is, the sum of all the natural numbers less than, or equal to, n */
|
||||
public static int triangleNumber(int n) {
|
||||
int sum = 0;
|
||||
for (int i = 0; i <= n; i++) sum += i;
|
||||
return sum;
|
||||
}
|
||||
|
||||
public static int solution1(int number) {
|
||||
int j = 0; // j represents the jth triangle number
|
||||
int n = 0; // n represents the triangle number corresponding to j
|
||||
int numberOfDivisors = 0; // number of divisors for triangle number n
|
||||
|
||||
while (numberOfDivisors <= number) {
|
||||
|
||||
// resets numberOfDivisors because it's now checking a new triangle number
|
||||
// and also sets n to be the next triangle number
|
||||
numberOfDivisors = 0;
|
||||
j++;
|
||||
n = triangleNumber(j);
|
||||
|
||||
// for every number from 1 to the square root of this triangle number,
|
||||
// count the number of divisors
|
||||
for (int i = 1; i <= Math.sqrt(n); i++) if (n % i == 0) numberOfDivisors++;
|
||||
|
||||
// 1 to the square root of the number holds exactly half of the divisors
|
||||
// so multiply it by 2 to include the other corresponding half
|
||||
numberOfDivisors *= 2;
|
||||
}
|
||||
return n;
|
||||
}
|
||||
}
|
Loading…
Reference in New Issue
Block a user