Refactor BSTFromSortedArray (#4162)

This commit is contained in:
Albina Gimaletdinova 2023-04-22 10:53:12 +03:00 committed by GitHub
parent c01a382d94
commit 4c18e60671
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
5 changed files with 87 additions and 51 deletions

View File

@ -0,0 +1,33 @@
package com.thealgorithms.datastructures.trees;
import com.thealgorithms.datastructures.trees.BinaryTree.Node;
/**
* Given a sorted array. Create a balanced binary search tree from it.
*
* Steps: 1. Find the middle element of array. This will act as root 2. Use the
* left half recursively to create left subtree 3. Use the right half
* recursively to create right subtree
*/
public class BSTFromSortedArray {
public static Node createBST(int[] array) {
if (array == null || array.length == 0) {
return null;
}
return createBST(array, 0, array.length - 1);
}
private static Node createBST(int[] array, int startIdx, int endIdx) {
// No element left.
if (startIdx > endIdx) {
return null;
}
int mid = startIdx + (endIdx - startIdx) / 2;
// middle element will be the root
Node root = new Node(array[mid]);
root.left = createBST(array, startIdx, mid - 1);
root.right = createBST(array, mid + 1, endIdx);
return root;
}
}

View File

@ -8,7 +8,7 @@ package com.thealgorithms.datastructures.trees;
* where 'min' and 'max' values represent the child nodes (left, right). * where 'min' and 'max' values represent the child nodes (left, right).
* 2. The smallest possible node value is Integer.MIN_VALUE, the biggest - Integer.MAX_VALUE. * 2. The smallest possible node value is Integer.MIN_VALUE, the biggest - Integer.MAX_VALUE.
*/ */
public class ValidBSTOrNot { public class CheckBinaryTreeIsValidBST {
public static boolean isBST(BinaryTree.Node root) { public static boolean isBST(BinaryTree.Node root) {
return isBSTUtil(root, Integer.MIN_VALUE, Integer.MAX_VALUE); return isBSTUtil(root, Integer.MIN_VALUE, Integer.MAX_VALUE);
} }

View File

@ -1,44 +0,0 @@
package com.thealgorithms.datastructures.trees;
import com.thealgorithms.datastructures.trees.BinaryTree.Node;
/**
* Given a sorted array. Create a balanced binary search tree from it.
*
* Steps: 1. Find the middle element of array. This will act as root 2. Use the
* left half recursively to create left subtree 3. Use the right half
* recursively to create right subtree
*/
public class CreateBSTFromSortedArray {
public static void main(String[] args) {
test(new int[] {});
test(new int[] { 1, 2, 3 });
test(new int[] { 1, 2, 3, 4, 5 });
test(new int[] { 1, 2, 3, 4, 5, 6, 7 });
}
private static void test(int[] array) {
BinaryTree root = new BinaryTree(createBst(array, 0, array.length - 1));
System.out.println("\n\nPreorder Traversal: ");
root.preOrder(root.getRoot());
System.out.println("\nInorder Traversal: ");
root.inOrder(root.getRoot());
System.out.println("\nPostOrder Traversal: ");
root.postOrder(root.getRoot());
}
private static Node createBst(int[] array, int start, int end) {
// No element left.
if (start > end) {
return null;
}
int mid = start + (end - start) / 2;
// middle element will be the root
Node root = new Node(array[mid]);
root.left = createBst(array, start, mid - 1);
root.right = createBst(array, mid + 1, end);
return root;
}
}

View File

@ -0,0 +1,47 @@
package com.thealgorithms.datastructures.trees;
import org.junit.jupiter.api.Assertions;
import org.junit.jupiter.api.Test;
/**
* @author Albina Gimaletdinova on 20/04/2023
*/
public class BSTFromSortedArrayTest {
@Test
public void testNullArray() {
BinaryTree.Node actualBST = BSTFromSortedArray.createBST(null);
Assertions.assertNull(actualBST);
}
@Test
public void testEmptyArray() {
BinaryTree.Node actualBST = BSTFromSortedArray.createBST(new int[]{});
Assertions.assertNull(actualBST);
}
@Test
public void testSingleElementArray() {
BinaryTree.Node actualBST = BSTFromSortedArray.createBST(new int[]{Integer.MIN_VALUE});
Assertions.assertTrue(CheckBinaryTreeIsValidBST.isBST(actualBST));
}
@Test
public void testCreateBSTFromSmallArray() {
BinaryTree.Node actualBST = BSTFromSortedArray.createBST(new int[]{1, 2, 3});
Assertions.assertTrue(CheckBinaryTreeIsValidBST.isBST(actualBST));
}
@Test
public void testCreateBSTFromLongerArray() {
int[] array = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
BinaryTree.Node actualBST = BSTFromSortedArray.createBST(array);
Assertions.assertTrue(CheckBinaryTreeIsValidBST.isBST(actualBST));
}
@Test
public void testShouldNotCreateBSTFromNonSortedArray() {
int[] array = {10, 2, 3, 4, 5, 6, 7, 8, 9, 1};
BinaryTree.Node actualBST = BSTFromSortedArray.createBST(array);
Assertions.assertFalse(CheckBinaryTreeIsValidBST.isBST(actualBST));
}
}

View File

@ -8,16 +8,16 @@ import static org.junit.jupiter.api.Assertions.assertTrue;
/** /**
* @author Albina Gimaletdinova on 17/02/2023 * @author Albina Gimaletdinova on 17/02/2023
*/ */
public class ValidBSTOrNotTest { public class CheckBinaryTreeIsValidBSTTest {
@Test @Test
public void testRootNull() { public void testRootNull() {
assertTrue(ValidBSTOrNot.isBST(null)); assertTrue(CheckBinaryTreeIsValidBST.isBST(null));
} }
@Test @Test
public void testOneNode() { public void testOneNode() {
final BinaryTree.Node root = TreeTestUtils.createTree(new Integer[]{Integer.MIN_VALUE}); final BinaryTree.Node root = TreeTestUtils.createTree(new Integer[]{Integer.MIN_VALUE});
assertTrue(ValidBSTOrNot.isBST(root)); assertTrue(CheckBinaryTreeIsValidBST.isBST(root));
} }
/* /*
@ -30,7 +30,7 @@ public class ValidBSTOrNotTest {
@Test @Test
public void testBinaryTreeIsBST() { public void testBinaryTreeIsBST() {
final BinaryTree.Node root = TreeTestUtils.createTree(new Integer[]{9, 7, 13, 3, 8, 10, 20}); final BinaryTree.Node root = TreeTestUtils.createTree(new Integer[]{9, 7, 13, 3, 8, 10, 20});
assertTrue(ValidBSTOrNot.isBST(root)); assertTrue(CheckBinaryTreeIsValidBST.isBST(root));
} }
/* /*
@ -43,7 +43,7 @@ public class ValidBSTOrNotTest {
@Test @Test
public void testBinaryTreeWithDuplicatedNodesIsNotBST() { public void testBinaryTreeWithDuplicatedNodesIsNotBST() {
final BinaryTree.Node root = TreeTestUtils.createTree(new Integer[]{9, 7, 13, 3, 8, 10, 13}); final BinaryTree.Node root = TreeTestUtils.createTree(new Integer[]{9, 7, 13, 3, 8, 10, 13});
assertFalse(ValidBSTOrNot.isBST(root)); assertFalse(CheckBinaryTreeIsValidBST.isBST(root));
} }
/* /*
@ -56,6 +56,6 @@ public class ValidBSTOrNotTest {
@Test @Test
public void testBinaryTreeIsNotBST() { public void testBinaryTreeIsNotBST() {
final BinaryTree.Node root = TreeTestUtils.createTree(new Integer[]{9, 7, 13, 3, 8, 10, 12}); final BinaryTree.Node root = TreeTestUtils.createTree(new Integer[]{9, 7, 13, 3, 8, 10, 12});
assertFalse(ValidBSTOrNot.isBST(root)); assertFalse(CheckBinaryTreeIsValidBST.isBST(root));
} }
} }