Merge pull request #288 from freitzzz/master

Fixed files and folders name conventions
This commit is contained in:
Varun Upadhyay 2017-10-28 09:20:59 -07:00 committed by GitHub
commit 4d0d02d709
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
41 changed files with 717 additions and 523 deletions

View File

@ -0,0 +1,283 @@
<<<<<<< HEAD:Data Structures/HashMap/HashMap.java
import java.util.ArrayList;
import java.util.LinkedList;
public class HashMap<K,V> {
public class hmnodes{ //HashMap nodes
K key;
V value;
}
private int size=0; //size of hashmap
private LinkedList<hmnodes> buckets[]; //array of addresses of list
public HashMap(){
buckets=new LinkedList[4]; //initially create bucket of any size
for(int i=0;i<4;i++)
buckets[i]=new LinkedList<>();
}
public void put(K key,V value) throws Exception{
int bi=bucketIndex(key); //find the index,the new key will be inserted in linklist at that index
int fountAt=find(bi,key); //check if key already exists or not
if(fountAt==-1){
hmnodes temp=new hmnodes(); //if doesn't exist create new node and insert
temp.key=key;
temp.value=value;
buckets[bi].addLast(temp);
this.size++;
}else{
buckets[bi].get(fountAt).value=value;//if already exist modify the value
}
double lambda = (this.size*1.0)/this.buckets.length;
if(lambda>2.0){
rehash(); //rehashing function which will increase the size of bucket as soon as lambda exceeds 2.0
}
return;
}
public V get(K key) throws Exception{
int bi=bucketIndex(key);
int fountAt=find(bi,key);
if(fountAt==-1){
return null;
}else{
return buckets[bi].get(fountAt).value;
}
}
public V remove(K key) throws Exception{
int bi=bucketIndex(key);
int fountAt=find(bi,key);
if(fountAt==-1){
return null;
}else{
this.size--;
return buckets[bi].remove(fountAt).value;
}
}
public boolean containskey(K key) throws Exception{
int bi=bucketIndex(key);
int fountAt=find(bi,key);
if(fountAt==-1){
return false;
}else{
return true;
}
}
public int size(){
return this.size;
}
public boolean isempty(){
return this.size==0;
}
public ArrayList<K> keyset() throws Exception{
ArrayList<K> arr=new ArrayList<>();
for(int i=0;i<buckets.length;i++){
for(int j=0;j<buckets[i].size();j++){
arr.add(buckets[i].get(j).key);
}
}
return arr;
}
public ArrayList<V> valueset() throws Exception{
ArrayList<V> arr=new ArrayList<>();
for(int i=0;i<buckets.length;i++){
for(int j=0;j<buckets[i].size();j++){
arr.add(buckets[i].get(j).value);
}
}
return arr;
}
public void display() throws Exception{
for(int i=0;i<buckets.length;i++){
System.out.print("Bucket: "+i+" ");
for(int j=0;j<buckets[i].size();j++){
hmnodes temp=buckets[i].get(j);
System.out.print("["+temp.key+"->"+temp.value+"]");
}
System.out.println();
}
}
public int find(int bi,K key) throws Exception{
for(int i=0;i<buckets[bi].size();i++){
if(key.equals(buckets[bi].get(i).key))
return i;
}
return -1;
}
public int bucketIndex(K key) throws Exception{
int bi=key.hashCode();
return Math.abs(bi%buckets.length);
}
private void rehash() throws Exception{
LinkedList<hmnodes> ob[]= buckets;
buckets=new LinkedList[ob.length*2];
for(int i=0;i<ob.length*2;i++)
buckets[i]=new LinkedList<>();
size = 0;
for(int i=0;i<ob.length;i++){
for(int j=0;j<ob[i].size();j++){
put(ob[i].get(j).key,ob[i].get(j).value);
}
}
}
}
=======
import java.util.ArrayList;
import java.util.LinkedList;
public class HashMap<K,V> {
public class hmnodes{ //HashMap nodes
K key;
V value;
}
private int size=0; //size of hashmap
private LinkedList<hmnodes> buckets[]; //array of addresses of list
public HashMap(){
buckets=new LinkedList[4]; //initially create bucket of any size
for(int i=0;i<4;i++)
buckets[i]=new LinkedList<>();
}
public void put(K key,V value) throws Exception{
int bi=bucketIndex(key); //find the index,the new key will be inserted in linklist at that index
int fountAt=find(bi,key); //check if key already exists or not
if(fountAt==-1){
hmnodes temp=new hmnodes(); //if doesn't exist create new node and insert
temp.key=key;
temp.value=value;
buckets[bi].addLast(temp);
this.size++;
}else{
buckets[bi].get(fountAt).value=value;//if already exist modify the value
}
double lambda = (this.size*1.0)/this.buckets.length;
if(lambda>2.0){
rehash(); //rehashing function which will increase the size of bucket as soon as lambda exceeds 2.0
}
return;
}
public V get(K key) throws Exception{
int bi=bucketIndex(key);
int fountAt=find(bi,key);
if(fountAt==-1){
return null;
}else{
return buckets[bi].get(fountAt).value;
}
}
public V remove(K key) throws Exception{
int bi=bucketIndex(key);
int fountAt=find(bi,key);
if(fountAt==-1){
return null;
}else{
this.size--;
return buckets[bi].remove(fountAt).value;
}
}
public boolean containskey(K key) throws Exception{
int bi=bucketIndex(key);
int fountAt=find(bi,key);
if(fountAt==-1){
return false;
}else{
return true;
}
}
public int size(){
return this.size;
}
public boolean isempty(){
return this.size==0;
}
public ArrayList<K> keyset() throws Exception{
ArrayList<K> arr=new ArrayList<>();
for(int i=0;i<buckets.length;i++){
for(int j=0;j<buckets[i].size();j++){
arr.add(buckets[i].get(j).key);
}
}
return arr;
}
public ArrayList<V> valueset() throws Exception{
ArrayList<V> arr=new ArrayList<>();
for(int i=0;i<buckets.length;i++){
for(int j=0;j<buckets[i].size();j++){
arr.add(buckets[i].get(j).value);
}
}
return arr;
}
public void display() throws Exception{
for(int i=0;i<buckets.length;i++){
System.out.print("Bucket: "+i+" ");
for(int j=0;j<buckets[i].size();j++){
hmnodes temp=buckets[i].get(j);
System.out.print("["+temp.key+"->"+temp.value+"]");
}
System.out.println();
}
}
public int find(int bi,K key) throws Exception{
for(int i=0;i<buckets[bi].size();i++){
if(key.equals(buckets[bi].get(i).key))
return i;
}
return -1;
}
public int bucketIndex(K key) throws Exception{
int bi=key.hashCode();
return Math.abs(bi%buckets.length);
}
private void rehash() throws Exception{
LinkedList<hmnodes> ob[]= buckets;
buckets=new LinkedList[ob.length*2];
for(int i=0;i<ob.length*2;i++)
buckets[i]=new LinkedList<>();
size = 0;
for(int i=0;i<ob.length;i++){
for(int j=0;j<ob[i].size();j++){
put(ob[i].get(j).key,ob[i].get(j).value);
}
}
}
}
>>>>>>> 7e3a8c55c865471a33f6932a022a1059c5243fc3:data_structures/HashMap/HashMap.java

View File

@ -1,226 +1,226 @@
import java.util.ArrayList;
import java.util.LinkedList;
import java.util.Scanner;
public class treeclass {
private class Node {
int data;
ArrayList<Node> child = new ArrayList<>();
}
private Node root;
private int size;
/*
A generic tree is a tree which can have as many children as it can be
It might be possible that every node present is directly connected to
root node.
In this code
Every function has two copies: one function is helper function which can be called from
main and from that function a private function is called which will do the actual work.
I have done this, while calling from main one have to give minimum parameters.
*/
public treeclass() { //Constructor
Scanner scn = new Scanner(System.in);
root = create_treeG(null, 0, scn);
}
private Node create_treeG(Node node, int childindx, Scanner scn) {
// display
if (node == null) {
System.out.println("Enter root's data");
} else {
System.out.println("Enter data of parent of index " + node.data + " " + childindx);
}
// input
node = new Node();
node.data = scn.nextInt();
System.out.println("number of children");
int number = scn.nextInt();
for (int i = 0; i < number; i++) {
Node childd = create_treeG(node, i, scn);
size++;
node.child.add(childd);
}
return node;
}
/*
Function to display the generic tree
*/
public void display() { //Helper function
display_1(root);
return;
}
private void display_1(Node parent) {
System.out.print(parent.data + "=>");
for (int i = 0; i < parent.child.size(); i++) {
System.out.print(parent.child.get(i).data + " ");
}
System.out.println(".");
for (int i = 0; i < parent.child.size(); i++) {
display_1(parent.child.get(i));
}
return;
}
/*
One call store the size directly but if you are asked compute size this function to calcuate
size goes as follows
*/
public int size2call() {
return size2(root);
}
public int size2(Node roott) {
int sz = 0;
for (int i = 0; i < roott.child.size(); i++) {
sz += size2(roott.child.get(i));
}
return sz + 1;
}
/*
Function to compute maximum value in the generic tree
*/
public int maxcall() {
int maxi = root.data;
return max(root, maxi);
}
private int max(Node roott, int maxi) {
if (maxi < roott.data)
maxi = roott.data;
for (int i = 0; i < roott.child.size(); i++) {
maxi = max(roott.child.get(i), maxi);
}
return maxi;
}
/*
Function to compute HEIGHT of the generic tree
*/
public int heightcall() {
return height(root) - 1;
}
private int height(Node node) {
int h = 0;
for (int i = 0; i < node.child.size(); i++) {
int k = height(node.child.get(i));
if (k > h)
h = k;
}
return h + 1;
}
/*
Function to find whether a number is present in the generic tree or not
*/
public boolean findcall(int info) {
return find(root, info);
}
private boolean find(Node node, int info) {
if (node.data == info)
return true;
for (int i = 0; i < node.child.size(); i++) {
if (find(node.child.get(i), info))
return true;
}
return false;
}
/*
Function to calculate depth of generic tree
*/
public void depthcaller(int dep) {
depth(root, dep);
}
public void depth(Node node, int dep) {
if (dep == 0) {
System.out.println(node.data);
return;
}
for (int i = 0; i < node.child.size(); i++)
depth(node.child.get(i), dep - 1);
return;
}
/*
Function to print generic tree in pre-order
*/
public void preordercall() {
preorder(root);
System.out.println(".");
}
private void preorder(Node node) {
System.out.print(node.data + " ");
for (int i = 0; i < node.child.size(); i++)
preorder(node.child.get(i));
}
/*
Function to print generic tree in post-order
*/
public void postordercall() {
postorder(root);
System.out.println(".");
}
private void postorder(Node node) {
for (int i = 0; i < node.child.size(); i++)
postorder(node.child.get(i));
System.out.print(node.data + " ");
}
/*
Function to print generic tree in level-order
*/
public void levelorder() {
LinkedList<Node> q = new LinkedList<>();
q.addLast(root);
while (!q.isEmpty()) {
int k = q.getFirst().data;
System.out.print(k + " ");
for (int i = 0; i < q.getFirst().child.size(); i++) {
q.addLast(q.getFirst().child.get(i));
}
q.removeFirst();
}
System.out.println(".");
}
/*
Function to remove all leaves of generic tree
*/
public void removeleavescall() {
removeleaves(root);
}
private void removeleaves(Node node) {
ArrayList<Integer> arr = new ArrayList<>();
for (int i = 0; i < node.child.size(); i++) {
if (node.child.get(i).child.size() == 0) {
arr.add(i);
// node.child.remove(i);
// i--;
} else
removeleaves(node.child.get(i));
}
for (int i = arr.size() - 1; i >= 0; i--) {
node.child.remove(arr.get(i) + 0);
}
}
import java.util.ArrayList;
import java.util.LinkedList;
import java.util.Scanner;
public class treeclass {
private class Node {
int data;
ArrayList<Node> child = new ArrayList<>();
}
private Node root;
private int size;
/*
A generic tree is a tree which can have as many children as it can be
It might be possible that every node present is directly connected to
root node.
In this code
Every function has two copies: one function is helper function which can be called from
main and from that function a private function is called which will do the actual work.
I have done this, while calling from main one have to give minimum parameters.
*/
public treeclass() { //Constructor
Scanner scn = new Scanner(System.in);
root = create_treeG(null, 0, scn);
}
private Node create_treeG(Node node, int childindx, Scanner scn) {
// display
if (node == null) {
System.out.println("Enter root's data");
} else {
System.out.println("Enter data of parent of index " + node.data + " " + childindx);
}
// input
node = new Node();
node.data = scn.nextInt();
System.out.println("number of children");
int number = scn.nextInt();
for (int i = 0; i < number; i++) {
Node childd = create_treeG(node, i, scn);
size++;
node.child.add(childd);
}
return node;
}
/*
Function to display the generic tree
*/
public void display() { //Helper function
display_1(root);
return;
}
private void display_1(Node parent) {
System.out.print(parent.data + "=>");
for (int i = 0; i < parent.child.size(); i++) {
System.out.print(parent.child.get(i).data + " ");
}
System.out.println(".");
for (int i = 0; i < parent.child.size(); i++) {
display_1(parent.child.get(i));
}
return;
}
/*
One call store the size directly but if you are asked compute size this function to calcuate
size goes as follows
*/
public int size2call() {
return size2(root);
}
public int size2(Node roott) {
int sz = 0;
for (int i = 0; i < roott.child.size(); i++) {
sz += size2(roott.child.get(i));
}
return sz + 1;
}
/*
Function to compute maximum value in the generic tree
*/
public int maxcall() {
int maxi = root.data;
return max(root, maxi);
}
private int max(Node roott, int maxi) {
if (maxi < roott.data)
maxi = roott.data;
for (int i = 0; i < roott.child.size(); i++) {
maxi = max(roott.child.get(i), maxi);
}
return maxi;
}
/*
Function to compute HEIGHT of the generic tree
*/
public int heightcall() {
return height(root) - 1;
}
private int height(Node node) {
int h = 0;
for (int i = 0; i < node.child.size(); i++) {
int k = height(node.child.get(i));
if (k > h)
h = k;
}
return h + 1;
}
/*
Function to find whether a number is present in the generic tree or not
*/
public boolean findcall(int info) {
return find(root, info);
}
private boolean find(Node node, int info) {
if (node.data == info)
return true;
for (int i = 0; i < node.child.size(); i++) {
if (find(node.child.get(i), info))
return true;
}
return false;
}
/*
Function to calculate depth of generic tree
*/
public void depthcaller(int dep) {
depth(root, dep);
}
public void depth(Node node, int dep) {
if (dep == 0) {
System.out.println(node.data);
return;
}
for (int i = 0; i < node.child.size(); i++)
depth(node.child.get(i), dep - 1);
return;
}
/*
Function to print generic tree in pre-order
*/
public void preordercall() {
preorder(root);
System.out.println(".");
}
private void preorder(Node node) {
System.out.print(node.data + " ");
for (int i = 0; i < node.child.size(); i++)
preorder(node.child.get(i));
}
/*
Function to print generic tree in post-order
*/
public void postordercall() {
postorder(root);
System.out.println(".");
}
private void postorder(Node node) {
for (int i = 0; i < node.child.size(); i++)
postorder(node.child.get(i));
System.out.print(node.data + " ");
}
/*
Function to print generic tree in level-order
*/
public void levelorder() {
LinkedList<Node> q = new LinkedList<>();
q.addLast(root);
while (!q.isEmpty()) {
int k = q.getFirst().data;
System.out.print(k + " ");
for (int i = 0; i < q.getFirst().child.size(); i++) {
q.addLast(q.getFirst().child.get(i));
}
q.removeFirst();
}
System.out.println(".");
}
/*
Function to remove all leaves of generic tree
*/
public void removeleavescall() {
removeleaves(root);
}
private void removeleaves(Node node) {
ArrayList<Integer> arr = new ArrayList<>();
for (int i = 0; i < node.child.size(); i++) {
if (node.child.get(i).child.size() == 0) {
arr.add(i);
// node.child.remove(i);
// i--;
} else
removeleaves(node.child.get(i));
}
for (int i = arr.size() - 1; i >= 0; i--) {
node.child.remove(arr.get(i) + 0);
}
}

17
Misc/FloydTriangle.java Normal file
View File

@ -0,0 +1,17 @@
import java.util.Scanner;
class FloydTriangle {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
System.out.println("Enter the number of rows which you want in your Floyd Triangle: ");
int r = sc.nextInt(), n = 0;
for(int i=0; i < r; i++) {
for(int j=0; j <= i; j++) {
System.out.print(++n + " ");
}
System.out.println();
}
}
}

33
Misc/RootPrecision.java Normal file
View File

@ -0,0 +1,33 @@
import java.io.*;
import java.util.*;
import java.text.*;
import java.math.*;
import java.util.regex.*;
public class Solution {
public static void main(String[] args) {
//take input
Scanner scn = new Scanner(System.in);
int N = scn.nextInt(); //N is the input number
int P = scn.nextInt(); //P is precision value for eg - P is 3 in 2.564 and 5 in 3.80870.
System.out.println(squareRoot(N, P));
}
public static double squareRoot(int N, int P) {
double rv = 0; //rv means return value
double root = Math.pow(N, 0.5);
//calculate precision to power of 10 and then multiply it with root value.
int precision = (int) Math.pow(10, P);
root = root * precision;
/*typecast it into integer then divide by precision and again typecast into double
so as to have decimal points upto P precision */
rv = (int)root;
return (double)rv/precision;
}
}

View File

@ -1,158 +1,158 @@
import java.util.Comparator;
import java.util.Iterator;
import java.util.LinkedList;
import java.util.List;
import java.util.Scanner;
import java.util.Stack;
/**
*
* @author Mayank Kumar (mk9440)
*/
/*
Output :
Enter number of distinct letters
6
Enter letters with its frequncy to encode
Enter letter : a
Enter frequncy : 45
Enter letter : b
Enter frequncy : 13
Enter letter : c
Enter frequncy : 12
Enter letter : d
Enter frequncy : 16
Enter letter : e
Enter frequncy : 9
Enter letter : f
Enter frequncy : 5
Letter Encoded Form
a 0
b 1 0 1
c 1 0 0
d 1 1 1
e 1 1 0 1
f 1 1 0 0
*/
class Node{
String letr="";
int freq=0,data=0;
Node left=null,right=null;
}
//A comparator class to sort list on the basis of their frequency
class comp implements Comparator<Node>{
@Override
public int compare(Node o1, Node o2) {
if(o1.freq>o2.freq){return 1;}
else if(o1.freq<o2.freq){return -1;}
else{return 0;}
}
}
public class Huffman {
// A simple function to print a given list
//I just made it for debugging
public static void print_list(List li){
Iterator<Node> it=li.iterator();
while(it.hasNext()){Node n=it.next();System.out.print(n.freq+" ");}System.out.println();
}
//Function for making tree (Huffman Tree)
public static Node make_huffmann_tree(List li){
//Sorting list in increasing order of its letter frequency
li.sort(new comp());
Node temp=null;
Iterator it=li.iterator();
//System.out.println(li.size());
//Loop for making huffman tree till only single node remains in list
while(true){
temp=new Node();
//a and b are Node which are to be combine to make its parent
Node a=new Node(),b=new Node();
a=null;b=null;
//checking if list is eligible for combining or not
//here first assignment of it.next in a will always be true as list till end will
//must have atleast one node
a=(Node)it.next();
//Below condition is to check either list has 2nd node or not to combine
//If this condition will be false, then it means construction of huffman tree is completed
if(it.hasNext()){b=(Node)it.next();}
//Combining first two smallest nodes in list to make its parent whose frequncy
//will be equals to sum of frequency of these two nodes
if(b!=null){
temp.freq=a.freq+b.freq;a.data=0;b.data=1;//assigining 0 and 1 to left and right nodes
temp.left=a;temp.right=b;
//after combing, removing first two nodes in list which are already combined
li.remove(0);//removes first element which is now combined -step1
li.remove(0);//removes 2nd element which comes on 1st position after deleting first in step1
li.add(temp);//adding new combined node to list
//print_list(li); //For visualizing each combination step
}
//Sorting after combining to again repeat above on sorted frequency list
li.sort(new comp());
it=li.iterator();//resetting list pointer to first node (head/root of tree)
if(li.size()==1){return (Node)it.next();} //base condition ,returning root of huffman tree
}
}
//Function for finding path between root and given letter ch
public static void dfs(Node n,String ch){
Stack<Node> st=new Stack(); // stack for storing path
int freq=n.freq; // recording root freq to avoid it adding in path encoding
find_path_and_encode(st,n,ch,freq);
}
//A simple utility function to print stack (Used for printing path)
public static void print_path(Stack<Node> st){
for(int i=0;i<st.size();i++){
System.out.print(st.elementAt(i).data+" ");
}
}
public static void find_path_and_encode(Stack<Node> st,Node root,String s,int f){
//Base condition
if(root!= null){
if(root.freq!=f){st.push(root);} // avoiding root to add in path/encoding bits
if(root.letr.equals(s)){print_path(st);return;} // Recursion stopping condition when path gets founded
find_path_and_encode(st,root.left,s,f);
find_path_and_encode(st,root.right,s,f);
//Popping if path not found in right or left of this node,because we previously
//pushed this node in taking a mindset that it might be in path
st.pop();
}
}
public static void main(String args[]){
List <Node> li=new LinkedList<>();
Scanner in=new Scanner(System.in);
System.out.println("Enter number of distinct letters ");
int n=in.nextInt();
String s[]=new String[n];
System.out.print("Enter letters with its frequncy to encode\n");
for(int i=0;i<n;i++){
Node a=new Node();
System.out.print("Enter letter : ");
a.letr=in.next();s[i]=a.letr;
System.out.print("Enter frequncy : ");
a.freq=in.nextInt();System.out.println();
li.add(a);
}
Node root=new Node();
root=make_huffmann_tree(li);
System.out.println("Letter\t\tEncoded Form");
for(int i=0;i<n;i++){
System.out.print(s[i]+"\t\t");dfs(root,s[i]);System.out.println();}
}
}
import java.util.Comparator;
import java.util.Iterator;
import java.util.LinkedList;
import java.util.List;
import java.util.Scanner;
import java.util.Stack;
/**
*
* @author Mayank Kumar (mk9440)
*/
/*
Output :
Enter number of distinct letters
6
Enter letters with its frequncy to encode
Enter letter : a
Enter frequncy : 45
Enter letter : b
Enter frequncy : 13
Enter letter : c
Enter frequncy : 12
Enter letter : d
Enter frequncy : 16
Enter letter : e
Enter frequncy : 9
Enter letter : f
Enter frequncy : 5
Letter Encoded Form
a 0
b 1 0 1
c 1 0 0
d 1 1 1
e 1 1 0 1
f 1 1 0 0
*/
class Node{
String letr="";
int freq=0,data=0;
Node left=null,right=null;
}
//A comparator class to sort list on the basis of their frequency
class comp implements Comparator<Node>{
@Override
public int compare(Node o1, Node o2) {
if(o1.freq>o2.freq){return 1;}
else if(o1.freq<o2.freq){return -1;}
else{return 0;}
}
}
public class Huffman {
// A simple function to print a given list
//I just made it for debugging
public static void print_list(List li){
Iterator<Node> it=li.iterator();
while(it.hasNext()){Node n=it.next();System.out.print(n.freq+" ");}System.out.println();
}
//Function for making tree (Huffman Tree)
public static Node make_huffmann_tree(List li){
//Sorting list in increasing order of its letter frequency
li.sort(new comp());
Node temp=null;
Iterator it=li.iterator();
//System.out.println(li.size());
//Loop for making huffman tree till only single node remains in list
while(true){
temp=new Node();
//a and b are Node which are to be combine to make its parent
Node a=new Node(),b=new Node();
a=null;b=null;
//checking if list is eligible for combining or not
//here first assignment of it.next in a will always be true as list till end will
//must have atleast one node
a=(Node)it.next();
//Below condition is to check either list has 2nd node or not to combine
//If this condition will be false, then it means construction of huffman tree is completed
if(it.hasNext()){b=(Node)it.next();}
//Combining first two smallest nodes in list to make its parent whose frequncy
//will be equals to sum of frequency of these two nodes
if(b!=null){
temp.freq=a.freq+b.freq;a.data=0;b.data=1;//assigining 0 and 1 to left and right nodes
temp.left=a;temp.right=b;
//after combing, removing first two nodes in list which are already combined
li.remove(0);//removes first element which is now combined -step1
li.remove(0);//removes 2nd element which comes on 1st position after deleting first in step1
li.add(temp);//adding new combined node to list
//print_list(li); //For visualizing each combination step
}
//Sorting after combining to again repeat above on sorted frequency list
li.sort(new comp());
it=li.iterator();//resetting list pointer to first node (head/root of tree)
if(li.size()==1){return (Node)it.next();} //base condition ,returning root of huffman tree
}
}
//Function for finding path between root and given letter ch
public static void dfs(Node n,String ch){
Stack<Node> st=new Stack(); // stack for storing path
int freq=n.freq; // recording root freq to avoid it adding in path encoding
find_path_and_encode(st,n,ch,freq);
}
//A simple utility function to print stack (Used for printing path)
public static void print_path(Stack<Node> st){
for(int i=0;i<st.size();i++){
System.out.print(st.elementAt(i).data+" ");
}
}
public static void find_path_and_encode(Stack<Node> st,Node root,String s,int f){
//Base condition
if(root!= null){
if(root.freq!=f){st.push(root);} // avoiding root to add in path/encoding bits
if(root.letr.equals(s)){print_path(st);return;} // Recursion stopping condition when path gets founded
find_path_and_encode(st,root.left,s,f);
find_path_and_encode(st,root.right,s,f);
//Popping if path not found in right or left of this node,because we previously
//pushed this node in taking a mindset that it might be in path
st.pop();
}
}
public static void main(String args[]){
List <Node> li=new LinkedList<>();
Scanner in=new Scanner(System.in);
System.out.println("Enter number of distinct letters ");
int n=in.nextInt();
String s[]=new String[n];
System.out.print("Enter letters with its frequncy to encode\n");
for(int i=0;i<n;i++){
Node a=new Node();
System.out.print("Enter letter : ");
a.letr=in.next();s[i]=a.letr;
System.out.print("Enter frequncy : ");
a.freq=in.nextInt();System.out.println();
li.add(a);
}
Node root=new Node();
root=make_huffmann_tree(li);
System.out.println("Letter\t\tEncoded Form");
for(int i=0;i<n;i++){
System.out.print(s[i]+"\t\t");dfs(root,s[i]);System.out.println();}
}
}

View File

@ -1,139 +0,0 @@
import java.util.ArrayList;
import java.util.LinkedList;
public class HashMap<K,V> {
public class hmnodes{ //HashMap nodes
K key;
V value;
}
private int size=0; //size of hashmap
private LinkedList<hmnodes> buckets[]; //array of addresses of list
public HashMap(){
buckets=new LinkedList[4]; //initially create bucket of any size
for(int i=0;i<4;i++)
buckets[i]=new LinkedList<>();
}
public void put(K key,V value) throws Exception{
int bi=bucketIndex(key); //find the index,the new key will be inserted in linklist at that index
int fountAt=find(bi,key); //check if key already exists or not
if(fountAt==-1){
hmnodes temp=new hmnodes(); //if doesn't exist create new node and insert
temp.key=key;
temp.value=value;
buckets[bi].addLast(temp);
this.size++;
}else{
buckets[bi].get(fountAt).value=value;//if already exist modify the value
}
double lambda = (this.size*1.0)/this.buckets.length;
if(lambda>2.0){
rehash(); //rehashing function which will increase the size of bucket as soon as lambda exceeds 2.0
}
return;
}
public V get(K key) throws Exception{
int bi=bucketIndex(key);
int fountAt=find(bi,key);
if(fountAt==-1){
return null;
}else{
return buckets[bi].get(fountAt).value;
}
}
public V remove(K key) throws Exception{
int bi=bucketIndex(key);
int fountAt=find(bi,key);
if(fountAt==-1){
return null;
}else{
this.size--;
return buckets[bi].remove(fountAt).value;
}
}
public boolean containskey(K key) throws Exception{
int bi=bucketIndex(key);
int fountAt=find(bi,key);
if(fountAt==-1){
return false;
}else{
return true;
}
}
public int size(){
return this.size;
}
public boolean isempty(){
return this.size==0;
}
public ArrayList<K> keyset() throws Exception{
ArrayList<K> arr=new ArrayList<>();
for(int i=0;i<buckets.length;i++){
for(int j=0;j<buckets[i].size();j++){
arr.add(buckets[i].get(j).key);
}
}
return arr;
}
public ArrayList<V> valueset() throws Exception{
ArrayList<V> arr=new ArrayList<>();
for(int i=0;i<buckets.length;i++){
for(int j=0;j<buckets[i].size();j++){
arr.add(buckets[i].get(j).value);
}
}
return arr;
}
public void display() throws Exception{
for(int i=0;i<buckets.length;i++){
System.out.print("Bucket: "+i+" ");
for(int j=0;j<buckets[i].size();j++){
hmnodes temp=buckets[i].get(j);
System.out.print("["+temp.key+"->"+temp.value+"]");
}
System.out.println();
}
}
public int find(int bi,K key) throws Exception{
for(int i=0;i<buckets[bi].size();i++){
if(key.equals(buckets[bi].get(i).key))
return i;
}
return -1;
}
public int bucketIndex(K key) throws Exception{
int bi=key.hashCode();
return Math.abs(bi%buckets.length);
}
private void rehash() throws Exception{
LinkedList<hmnodes> ob[]= buckets;
buckets=new LinkedList[ob.length*2];
for(int i=0;i<ob.length*2;i++)
buckets[i]=new LinkedList<>();
size = 0;
for(int i=0;i<ob.length;i++){
for(int j=0;j<ob[i].size();j++){
put(ob[i].get(j).key,ob[i].get(j).value);
}
}
}
}