Merge pull request #1301 from BenSchokoRiegel/master
Implementing AmicableNumber and VampireNumbers in the Math class
This commit is contained in:
commit
4deae1ec3b
87
Maths/AmicableNumber.java
Normal file
87
Maths/AmicableNumber.java
Normal file
@ -0,0 +1,87 @@
|
|||||||
|
package Maths;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Amicable numbers are two different numbers so related
|
||||||
|
* that the sum of the proper divisors of each is equal to the other number.
|
||||||
|
* (A proper divisor of a number is a positive factor of that number other than the number itself.
|
||||||
|
* For example, the proper divisors of 6 are 1, 2, and 3.)
|
||||||
|
* A pair of amicable numbers constitutes an aliquot sequence of period 2.
|
||||||
|
* It is unknown if there are infinitely many pairs of amicable numbers.
|
||||||
|
* *
|
||||||
|
* <p>
|
||||||
|
* * link: https://en.wikipedia.org/wiki/Amicable_numbers
|
||||||
|
* * </p>
|
||||||
|
* <p>
|
||||||
|
* Simple Example : (220,284) 220 is divisible by {1,2,4,5,10,11,20,22,44,55,110 } <- Sum = 284
|
||||||
|
* 284 is divisible by -> 1,2,4,71,142 and the Sum of that is. Yes right you probably expected it 220
|
||||||
|
*/
|
||||||
|
|
||||||
|
public class AmicableNumber {
|
||||||
|
|
||||||
|
public static void main(String[] args) {
|
||||||
|
|
||||||
|
AmicableNumber.findAllInRange(1,3000);
|
||||||
|
/* Res -> Int Range of 1 till 3000there are 3Amicable_numbers These are 1: = ( 220,284) 2: = ( 1184,1210)
|
||||||
|
3: = ( 2620,2924) So it worked */
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @param startValue
|
||||||
|
* @param stopValue
|
||||||
|
* @return
|
||||||
|
*/
|
||||||
|
static void findAllInRange(int startValue, int stopValue) {
|
||||||
|
|
||||||
|
/* the 2 for loops are to avoid to double check tuple. For example (200,100) and (100,200) is the same calculation
|
||||||
|
* also to avoid is to check the number with it self. a number with itself is always a AmicableNumber
|
||||||
|
* */
|
||||||
|
StringBuilder res = new StringBuilder();
|
||||||
|
int countofRes = 0;
|
||||||
|
|
||||||
|
for (int i = startValue; i < stopValue; i++) {
|
||||||
|
for (int j = i + 1; j <= stopValue; j++) {
|
||||||
|
if (isAmicableNumber(i, j)) {
|
||||||
|
countofRes++;
|
||||||
|
res.append("" + countofRes + ": = ( " + i + "," + j + ")" + "\t");
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
res.insert(0, "Int Range of " + startValue + " till " + stopValue + " there are " + countofRes + " Amicable_numbers.These are \n ");
|
||||||
|
System.out.println(res.toString());
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Check if {@code numberOne and numberTwo } are AmicableNumbers or not
|
||||||
|
*
|
||||||
|
* @param numberOne numberTwo
|
||||||
|
* @return {@code true} if {@code numberOne numberTwo} isAmicableNumbers otherwise false
|
||||||
|
*/
|
||||||
|
static boolean isAmicableNumber(int numberOne, int numberTwo) {
|
||||||
|
|
||||||
|
return ((recursiveCalcOfDividerSum(numberOne, numberOne) == numberTwo && numberOne == recursiveCalcOfDividerSum(numberTwo, numberTwo)));
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* calculated in recursive calls the Sum of all the Dividers beside it self
|
||||||
|
*
|
||||||
|
* @param number div = the next to test dividely by using the modulo operator
|
||||||
|
* @return sum of all the dividers
|
||||||
|
*/
|
||||||
|
static int recursiveCalcOfDividerSum(int number, int div) {
|
||||||
|
|
||||||
|
if (div == 1) {
|
||||||
|
return 0;
|
||||||
|
} else if (number % --div == 0) {
|
||||||
|
return recursiveCalcOfDividerSum(number, div) + div;
|
||||||
|
} else {
|
||||||
|
return recursiveCalcOfDividerSum(number, div);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
}
|
94
Maths/VampireNumber.java
Normal file
94
Maths/VampireNumber.java
Normal file
@ -0,0 +1,94 @@
|
|||||||
|
package Maths;
|
||||||
|
|
||||||
|
import java.util.ArrayList;
|
||||||
|
import java.util.Collections;
|
||||||
|
import java.util.List;
|
||||||
|
|
||||||
|
/**
|
||||||
|
n number theory, a vampire number (or true vampire number) is a composite natural number with an even number of digits,
|
||||||
|
that can be factored into two natural numbers each with half as many digits as the original number
|
||||||
|
and not both with trailing zeroes, where the two factors contain precisely
|
||||||
|
all the digits of the original number, in any order, counting multiplicity.
|
||||||
|
The first vampire number is 1260 = 21 × 60.
|
||||||
|
* *
|
||||||
|
* <p>
|
||||||
|
* * link: https://en.wikipedia.org/wiki/Vampire_number
|
||||||
|
* * </p>
|
||||||
|
* <p>
|
||||||
|
*
|
||||||
|
*/
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
public class VampireNumber {
|
||||||
|
|
||||||
|
public static void main(String[] args) {
|
||||||
|
|
||||||
|
test(10,1000);
|
||||||
|
}
|
||||||
|
|
||||||
|
static void test(int startValue, int stopValue) {
|
||||||
|
int countofRes = 1;
|
||||||
|
StringBuilder res = new StringBuilder();
|
||||||
|
|
||||||
|
|
||||||
|
for (int i = startValue; i <= stopValue; i++) {
|
||||||
|
for (int j = i; j <= stopValue; j++) {
|
||||||
|
// System.out.println(i+ " "+ j);
|
||||||
|
if (isVampireNumber(i, j,true)) {
|
||||||
|
countofRes++;
|
||||||
|
res.append("" + countofRes + ": = ( " + i + "," + j + " = " + i*j + ")" + "\n");
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
System.out.println(res);
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
static boolean isVampireNumber(int a, int b, boolean noPseudoVamireNumbers ) {
|
||||||
|
|
||||||
|
// this is for pseudoVampireNumbers pseudovampire number need not be of length n/2 digits for example
|
||||||
|
// 126 = 6 x 21
|
||||||
|
if (noPseudoVamireNumbers) {
|
||||||
|
if (a * 10 <= b || b * 10 <= a) {
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
String mulDigits = splitIntoDigits(a*b,0);
|
||||||
|
String faktorDigits = splitIntoDigits(a,b);
|
||||||
|
|
||||||
|
return mulDigits.equals(faktorDigits);
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
// methode to Split the numbers to Digits
|
||||||
|
static String splitIntoDigits(int num, int num2) {
|
||||||
|
|
||||||
|
StringBuilder res = new StringBuilder();
|
||||||
|
|
||||||
|
ArrayList<Integer> digits = new ArrayList<>();
|
||||||
|
while (num > 0) {
|
||||||
|
digits.add(num%10);
|
||||||
|
num /= 10;
|
||||||
|
}
|
||||||
|
while (num2 > 0) {
|
||||||
|
digits.add(num2%10);
|
||||||
|
num2/= 10;
|
||||||
|
}
|
||||||
|
Collections.sort(digits);
|
||||||
|
for (int i : digits) {
|
||||||
|
res.append(i);
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
return res.toString();
|
||||||
|
}
|
||||||
|
}
|
Loading…
Reference in New Issue
Block a user