Modify Insertion sort implementation to classical one + add function insertion-sentinel sort. (#3622)

* bug fix for CircularBuffer + refactoring + add unit tests

* change Insertion sort to classical implementation + add isSorted function to SortUtils + add SortUtilsRandomGenerator for generating random values and arrays

* little fix

Co-authored-by: Debasish Biswas <debasishbsws.abc@gmail.com>
This commit is contained in:
Narek Karapetian 2022-11-06 04:24:08 -08:00 committed by GitHub
parent c8ecd23183
commit 58cf08f2fd
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
6 changed files with 303 additions and 20 deletions

View File

@ -1,7 +1,8 @@
package com.thealgorithms.sorts; package com.thealgorithms.sorts;
import static com.thealgorithms.sorts.SortUtils.less; import java.util.function.Function;
import static com.thealgorithms.sorts.SortUtils.print;
import static com.thealgorithms.sorts.SortUtils.*;
class InsertionSort implements SortAlgorithm { class InsertionSort implements SortAlgorithm {
@ -9,21 +10,51 @@ class InsertionSort implements SortAlgorithm {
* Generic insertion sort algorithm in increasing order. * Generic insertion sort algorithm in increasing order.
* *
* @param array the array to be sorted. * @param array the array to be sorted.
* @param <T> the class of array. * @param <T> the class of array.
* @return sorted array. * @return sorted array.
*/ */
@Override @Override
public <T extends Comparable<T>> T[] sort(T[] array) { public <T extends Comparable<T>> T[] sort(T[] array) {
for (int i = 1; i < array.length; i++) { for (int i = 1; i < array.length; i++)
T insertValue = array[i]; for (int j = i; j > 0 && less(array[j], array[j - 1]); j--)
int j; swap(array, j, j - 1);
for (j = i - 1; j >= 0 && less(insertValue, array[j]); j--) { return array;
array[j + 1] = array[j]; }
}
if (j != i - 1) { /**
array[j + 1] = insertValue; * Sentinel sort is a function which on the first step finds the minimal element in the provided
* array and puts it to the zero position, such a trick gives us an ability to avoid redundant
* comparisons like `j > 0` and swaps (we can move elements on position right, until we find
* the right position for the chosen element) on further step.
*
* @param array the array to be sorted
* @param <T> Generic type which extends Comparable interface.
* @return sorted array
*/
public <T extends Comparable<T>> T[] sentinelSort(T[] array) {
int minElemIndex = 0;
int n = array.length;
if (n < 1)
return array;
// put the smallest element to the 0 position as a sentinel, which will allow us to avoid
// redundant comparisons like `j > 0` further
for (int i = 1; i < n; i++)
if (less(array[i], array[minElemIndex]))
minElemIndex = i;
swap(array, 0, minElemIndex);
for (int i = 2; i < n; i++) {
int j = i;
T currentValue = array[i];
while (less(currentValue, array[j - 1])) {
array[j] = array[j - 1];
j--;
} }
array[j] = currentValue;
} }
return array; return array;
} }
@ -31,15 +62,27 @@ class InsertionSort implements SortAlgorithm {
* Driver Code * Driver Code
*/ */
public static void main(String[] args) { public static void main(String[] args) {
Integer[] integers = { 4, 23, 6, 78, 1, 54, 231, 9, 12 }; int size = 100_000;
InsertionSort sort = new InsertionSort(); Double[] randomArray = SortUtilsRandomGenerator.generateArray(size);
sort.sort(integers); Double[] copyRandomArray = new Double[size];
print(integers); System.arraycopy(randomArray, 0, copyRandomArray, 0, size);
/* [1, 4, 6, 9, 12, 23, 54, 78, 231] */
String[] strings = { "c", "a", "e", "b", "d" }; InsertionSort insertionSort = new InsertionSort();
sort.sort(strings); double insertionTime = measureApproxExecTime(insertionSort::sort, randomArray);
print(strings); System.out.printf("Original insertion time: %5.2f sec.\n", insertionTime);
/* [a, b, c, d, e] */
double insertionSentinelTime = measureApproxExecTime(insertionSort::sentinelSort, copyRandomArray);
System.out.printf("Sentinel insertion time: %5.2f sec.\n", insertionSentinelTime);
// ~ 1.5 time sentinel sort is faster, then classical Insertion sort implementation.
System.out.printf("Sentinel insertion is %f3.2 time faster than Original insertion sort\n",
insertionTime / insertionSentinelTime);
}
private static double measureApproxExecTime(Function<Double[], Double[]> sortAlgorithm, Double[] randomArray) {
long start = System.currentTimeMillis();
sortAlgorithm.apply(randomArray);
long end = System.currentTimeMillis();
return (end - start) / 1000.0;
} }
} }

View File

@ -99,4 +99,17 @@ final class SortUtils {
swap(array, left++, right--); swap(array, left++, right--);
} }
} }
/**
* Function to check if the array is sorted. By default, it will check if the array is sorted in ASC order.
*
* @param array - an array which to check is it sorted or not.
* @return true - if array sorted in ASC order, false otherwise.
*/
static <T extends Comparable<T>> boolean isSorted(T[] array) {
for (int i = 1; i < array.length; i++)
if (less(array[i], array[i - 1]))
return false;
return true;
}
} }

View File

@ -0,0 +1,38 @@
package com.thealgorithms.sorts;
import java.util.Random;
public class SortUtilsRandomGenerator {
private static final Random random;
private static final long seed;
static {
seed = System.currentTimeMillis();
random = new Random(seed);
}
/**
* Function to generate array of double values, with predefined size.
*
* @param size result array size
* @return array of Double values, randomly generated, each element is between [0, 1)
*/
public static Double[] generateArray(int size) {
Double[] arr = new Double[size];
for (int i = 0; i < size; i++)
arr[i] = generateDouble();
return arr;
}
/**
* Function to generate Double value.
*
* @return Double value [0, 1)
*/
public static Double generateDouble() {
return random.nextDouble();
}
}

View File

@ -0,0 +1,114 @@
package com.thealgorithms.sorts;
import org.junit.jupiter.api.BeforeEach;
import org.junit.jupiter.api.Test;
import java.util.function.Function;
import static org.junit.jupiter.api.Assertions.*;
class InsertionSortTest {
private InsertionSort insertionSort;
@BeforeEach
void setUp() {
insertionSort = new InsertionSort();
}
@Test
void insertionSortSortEmptyArrayShouldPass() {
testEmptyArray(insertionSort::sort);
testEmptyArray(insertionSort::sentinelSort);
}
private void testEmptyArray(Function<Integer[], Integer[]> sortAlgorithm) {
Integer[] array = {};
Integer[] sorted = sortAlgorithm.apply(array);
Integer[] expected = {};
assertArrayEquals(expected, sorted);
assertTrue(SortUtils.isSorted(sorted));
}
@Test
void insertionSortClassicalSortSingleValueArrayShouldPass() {
testSingleValue(insertionSort::sort);
testSingleValue(insertionSort::sentinelSort);
}
private void testSingleValue(Function<Integer[], Integer[]> sortAlgorithm) {
Integer[] array = {7};
Integer[] sorted = sortAlgorithm.apply(array);
Integer[] expected = {7};
assertArrayEquals(expected, sorted);
assertTrue(SortUtils.isSorted(sorted));
}
@Test
void insertionSortClassicalWithIntegerArrayShouldPass() {
testIntegerArray(insertionSort::sort);
testIntegerArray(insertionSort::sentinelSort);
}
private void testIntegerArray(Function<Integer[], Integer[]> sortAlgorithm) {
Integer[] array = {49, 4, 36, 9, 144, 1};
Integer[] sorted = sortAlgorithm.apply(array);
Integer[] expected = {1, 4, 9, 36, 49, 144};
assertArrayEquals(expected, sorted);
assertTrue(SortUtils.isSorted(sorted));
}
@Test
void insertionSortClassicalForArrayWithNegativeValuesShouldPass() {
testWithNegativeValues(insertionSort::sort);
testWithNegativeValues(insertionSort::sentinelSort);
}
private void testWithNegativeValues(Function<Integer[], Integer[]> sortAlgorithm) {
Integer[] array = {49, -36, -144, -49, 1, 9};
Integer[] sorted = sortAlgorithm.apply(array);
Integer[] expected = {-144, -49, -36, 1, 9, 49};
assertArrayEquals(expected, sorted);
assertTrue(SortUtils.isSorted(sorted));
}
@Test
void insertionSortClassicalForArrayWithDuplicateValuesShouldPass() {
testWithDuplicates(insertionSort::sort);
testWithDuplicates(insertionSort::sentinelSort);
}
private void testWithDuplicates(Function<Integer[], Integer[]> sortAlgorithm) {
Integer[] array = {36, 1, 49, 1, 4, 9};
Integer[] sorted = sortAlgorithm.apply(array);
Integer[] expected = {1, 1, 4, 9, 36, 49};
assertArrayEquals(expected, sorted);
assertTrue(SortUtils.isSorted(sorted));
}
@Test
void insertionSortClassicalWithStringArrayShouldPass() {
testWithStringArray(insertionSort::sort);
testWithStringArray(insertionSort::sentinelSort);
}
private void testWithStringArray(Function<String[], String[]> sortAlgorithm) {
String[] array = {"c", "a", "e", "b", "d"};
String[] sorted = sortAlgorithm.apply(array);
String[] expected = {"a", "b", "c", "d", "e"};
assertArrayEquals(expected, sorted);
assertTrue(SortUtils.isSorted(sorted));
}
@Test
void insertionSortClassicalWithRandomArrayPass() {
testWithRandomArray(insertionSort::sort);
testWithRandomArray(insertionSort::sentinelSort);
}
private void testWithRandomArray(Function<Double[], Double[]> sortAlgorithm) {
int randomSize = (int) (SortUtilsRandomGenerator.generateDouble() * 10_000);
Double[] array = SortUtilsRandomGenerator.generateArray(randomSize);
Double[] sorted = sortAlgorithm.apply(array);
assertTrue(SortUtils.isSorted(sorted));
}
}

View File

@ -0,0 +1,31 @@
package com.thealgorithms.sorts;
import org.junit.jupiter.api.RepeatedTest;
import org.junit.jupiter.api.Test;
import static org.assertj.core.api.Assertions.assertThat;
class SortUtilsRandomGeneratorTest {
@RepeatedTest(1000)
void generateArray() {
int size = 1_000;
Double[] doubles = SortUtilsRandomGenerator.generateArray(size);
assertThat(doubles).hasSize(size);
assertThat(doubles).doesNotContainNull();
}
@Test
void generateArrayEmpty() {
int size = 0;
Double[] doubles = SortUtilsRandomGenerator.generateArray(size);
assertThat(doubles).hasSize(size);
}
@RepeatedTest(1000)
void generateDouble() {
Double randomDouble = SortUtilsRandomGenerator.generateDouble();
assertThat(randomDouble).isBetween(0.0, 1.0);
assertThat(randomDouble).isNotEqualTo(1.0);
}
}

View File

@ -0,0 +1,44 @@
package com.thealgorithms.sorts;
import org.junit.jupiter.api.Test;
import static org.junit.jupiter.api.Assertions.*;
class SortUtilsTest {
@Test
void isSortedEmptyArray() {
Double[] emptyArray = {};
assertTrue(SortUtils.isSorted(emptyArray));
}
@Test
void isSortedWithSingleElement() {
Double[] singleElementArray = {1.0};
assertTrue(SortUtils.isSorted(singleElementArray));
}
@Test
void isSortedTrue() {
Integer[] array = {1, 1, 2, 3, 5, 8, 11};
assertTrue(SortUtils.isSorted(array));
Integer[] identicalArray = {1, 1, 1, 1, 1};
assertTrue(SortUtils.isSorted(identicalArray));
Double[] doubles = {-15.123, -15.111, 0.0, 0.12, 0.15};
assertTrue(SortUtils.isSorted(doubles));
}
@Test
void isSortedFalse() {
Double[] array = {1.0, 3.0, -0.15};
assertFalse(SortUtils.isSorted(array));
Integer[] array2 = {14, 15, 16, 1};
assertFalse(SortUtils.isSorted(array2));
Integer[] array3 = {5, 4, 3, 2, 1};
assertFalse(SortUtils.isSorted(array3));
}
}