Add Tarjans Algorithm (#3874)

This commit is contained in:
Shivanagouda Agasimani 2023-02-16 01:57:21 +05:30 committed by GitHub
parent a584ca248c
commit 69a428470c
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 210 additions and 0 deletions

View File

@ -0,0 +1,138 @@
package com.thealgorithms.datastructures.graphs;
import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;
import java.util.Stack;
/**
* Java program that implements Tarjan's Algorithm.
* @author Shivanagouda S A (https://github.com/shivu2002a)
*
*/
/**
* Tarjan's algorithm is a linear time algorithm to find the strongly connected components of a
directed graph, which, from here onwards will be referred as SCC.
* A graph is said to be strongly connected if every vertex is reachable from every other vertex.
The SCCs of a directed graph form a partition into subgraphs that are themselves strongly connected.
Single node is always a SCC.
* Example:
0 --------> 1 -------> 3 --------> 4
^ /
| /
| /
| /
| /
| /
| /
| /
| /
| /
|V
2
For the above graph, the SCC list goes as follows:
1, 2, 0
3
4
We can also see that order of the nodes in an SCC doesn't matter since they are in cycle.
{@summary}
Tarjan's Algorithm:
* DFS search produces a DFS tree
* Strongly Connected Components form subtrees of the DFS tree.
* If we can find the head of these subtrees, we can get all the nodes in that subtree (including the head)
and that will be one SCC.
* There is no back edge from one SCC to another (here can be cross edges, but they will not be used).
* Kosaraju Algorithm aims at doing the same but uses two DFS traversalse whereas Tarjans algorithm does
the same in a single DFS, which leads to much lower constant factors in the latter.
*/
public class TarjansAlgorithm {
//Timer for tracking lowtime and insertion time
private int Time;
private List<List<Integer>> SCClist = new ArrayList<List<Integer>>();
public List<List<Integer>> stronglyConnectedComponents(int V, List<List<Integer>> graph) {
// Initially all vertices as unvisited, insertion and low time are undefined
// insertionTime:Time when a node is visited 1st time while DFS traversal
// lowTime: indicates the earliest visited vertex (the vertex with minimum insertion time) that can
// be reached from a subtree rooted with a particular node.
int lowTime[] = new int[V];
int insertionTime[] = new int[V];
for (int i = 0; i < V; i++) {
insertionTime[i] = -1;
lowTime[i] = -1;
}
// To check if element is present in stack
boolean isInStack[] = new boolean[V];
// Store nodes during DFS
Stack<Integer> st = new Stack<Integer>();
for (int i = 0; i < V; i++) {
if (insertionTime[i] == -1)
stronglyConnCompsUtil(i, lowTime, insertionTime, isInStack, st, graph);
}
return SCClist;
}
private void stronglyConnCompsUtil(int u, int lowTime[], int insertionTime[],
boolean isInStack[], Stack<Integer> st, List<List<Integer>> graph) {
// Initialize insertion time and lowTime value of current node
insertionTime[u] = Time;
lowTime[u] = Time;
Time += 1;
//Push current node into stack
isInStack[u] = true;
st.push(u);
int n;
// Go through all vertices adjacent to this
Iterator<Integer> i = graph.get(u).iterator();
while (i.hasNext()) {
n = i.next();
//If the adjacent node is unvisited, do DFS
if (insertionTime[n] == -1) {
stronglyConnCompsUtil(n, lowTime, insertionTime, isInStack, st, graph);
//update lowTime for the current node comparing lowtime of adj node
lowTime[u] = Math.min(lowTime[u], lowTime[n]);
} else if (isInStack[n] == true) {
//If adj node is in stack, update low
lowTime[u] = Math.min(lowTime[u], insertionTime[n]);
}
}
//If lowtime and insertion time are same, current node is the head of an SCC
// head node found, get all the nodes in this SCC
if (lowTime[u] == insertionTime[u]) {
int w = -1;
var scc = new ArrayList<Integer>();
//Stack has all the nodes of the current SCC
while (w != u) {
w = st.pop();
scc.add(w);
isInStack[w] = false;
}
SCClist.add(scc);
}
}
}

View File

@ -0,0 +1,72 @@
package com.thealgorithms.datastructures.graphs;
import static org.junit.jupiter.api.Assertions.assertTrue;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
import org.junit.jupiter.api.Test;
public class TarjansAlgorithmTest {
TarjansAlgorithm tarjansAlgo = new TarjansAlgorithm();
@Test
public void findStronglyConnectedComps(){
var v = 5;
var graph = new ArrayList<List<Integer>>();
for (int i = 0; i < v; i++) {
graph.add(new ArrayList<>());
}
graph.get(0).add(1);
graph.get(1).add(2);
graph.get(2).add(0);
graph.get(1).add(3);
graph.get(3).add(4);
var actualResult = tarjansAlgo.stronglyConnectedComponents(v, graph);
/*
Expected result:
0, 1, 2
3
4
*/
List<List<Integer>> expectedResult = new ArrayList<>();
expectedResult.add(Arrays.asList(4));
expectedResult.add(Arrays.asList(3));
expectedResult.add(Arrays.asList(2, 1, 0));
assertTrue(expectedResult.equals(actualResult));
}
@Test
public void findStronglyConnectedCompsShouldGetSingleNodes() {
//Create a adjacency list of graph
var n = 8;
var adjList = new ArrayList<List<Integer>>(n);
for (int i = 0; i < n; i++) {
adjList.add(new ArrayList<>());
}
adjList.get(0).add(1);
adjList.get(1).add(2);
adjList.get(2).add(3);
adjList.get(3).add(4);
adjList.get(4).add(5);
adjList.get(5).add(6);
adjList.get(6).add(7);
adjList.get(7).add(0);
List<List<Integer>> actualResult = tarjansAlgo.stronglyConnectedComponents(n, adjList);
List<List<Integer>> expectedResult = new ArrayList<>();
/*
Expected result:
7, 6, 5, 4, 3, 2, 1, 0
*/
expectedResult.add(Arrays.asList(7, 6, 5, 4, 3, 2, 1, 0));
assertTrue(expectedResult.equals(actualResult));
}
}