test: LongestAlternatingSubsequenceTest (#5399)

This commit is contained in:
Alex Klymenko 2024-08-26 08:37:00 +02:00 committed by GitHub
parent 93e417544d
commit 6edc009765
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
2 changed files with 62 additions and 40 deletions

View File

@ -1,38 +1,48 @@
package com.thealgorithms.dynamicprogramming; package com.thealgorithms.dynamicprogramming;
/* /**
* Class for finding the length of the longest alternating subsequence in an array.
* Problem Statement: - *
* Find Longest Alternating Subsequence * <p>An alternating sequence is a sequence of numbers where the elements alternate
* between increasing and decreasing. Specifically, a sequence is alternating if its elements
* A sequence {x1, x2, .. xn} is alternating sequence if its elements satisfy one of the following * satisfy one of the following relations:
relations : *
* <ul>
x1 < x2 > x3 < x4 > x5 < . xn or * <li>{@code x1 < x2 > x3 < x4 > x5 < ... < xn}</li>
x1 > x2 < x3 > x4 < x5 > . xn * <li>{@code x1 > x2 < x3 > x4 < x5 > ... > xn}</li>
* </ul>
*
* <p>This class provides a method to compute the length of the longest such subsequence
* from a given array of integers.
*/ */
public final class LongestAlternatingSubsequence { public final class LongestAlternatingSubsequence {
private LongestAlternatingSubsequence() { private LongestAlternatingSubsequence() {
} }
/* Function to return longest alternating subsequence length*/ /**
static int alternatingLength(int[] arr, int n) { * Finds the length of the longest alternating subsequence in the given array.
/* *
* @param arr an array of integers where the longest alternating subsequence is to be found
las[i][0] = Length of the longest * @param n the length of the array {@code arr}
alternating subsequence ending at * @return the length of the longest alternating subsequence
index i and last element is *
greater than its previous element * <p>The method uses dynamic programming to solve the problem. It maintains a 2D array
* {@code las} where:
las[i][1] = Length of the longest * <ul>
alternating subsequence ending at * <li>{@code las[i][0]} represents the length of the longest alternating subsequence
index i and last element is * ending at index {@code i} with the last element being greater than the previous element.</li>
smaller than its previous * <li>{@code las[i][1]} represents the length of the longest alternating subsequence
element * ending at index {@code i} with the last element being smaller than the previous element.</li>
* </ul>
*
* <p>The method iterates through the array and updates the {@code las} array based on
* whether the current element is greater or smaller than the previous elements.
* The result is the maximum value found in the {@code las} array.
*/ */
static int alternatingLength(int[] arr, int n) {
int[][] las = new int[n][2]; // las = LongestAlternatingSubsequence int[][] las = new int[n][2]; // las = LongestAlternatingSubsequence
// Initialize the dp array
for (int i = 0; i < n; i++) { for (int i = 0; i < n; i++) {
las[i][0] = 1; las[i][0] = 1;
las[i][1] = 1; las[i][1] = 1;
@ -40,34 +50,24 @@ public final class LongestAlternatingSubsequence {
int result = 1; // Initialize result int result = 1; // Initialize result
/* Compute values in bottom up manner */ // Compute values in a bottom-up manner
for (int i = 1; i < n; i++) { for (int i = 1; i < n; i++) {
/* Consider all elements as previous of arr[i]*/
for (int j = 0; j < i; j++) { for (int j = 0; j < i; j++) {
/* If arr[i] is greater, then check with las[j][1] */ // If arr[i] is greater than arr[j], update las[i][0]
if (arr[j] < arr[i] && las[i][0] < las[j][1] + 1) { if (arr[j] < arr[i] && las[i][0] < las[j][1] + 1) {
las[i][0] = las[j][1] + 1; las[i][0] = las[j][1] + 1;
} }
/* If arr[i] is smaller, then check with las[j][0]*/ // If arr[i] is smaller than arr[j], update las[i][1]
if (arr[j] > arr[i] && las[i][1] < las[j][0] + 1) { if (arr[j] > arr[i] && las[i][1] < las[j][0] + 1) {
las[i][1] = las[j][0] + 1; las[i][1] = las[j][0] + 1;
} }
} }
/* Pick maximum of both values at index i */ // Pick the maximum of both values at index i
if (result < Math.max(las[i][0], las[i][1])) { result = Math.max(result, Math.max(las[i][0], las[i][1]));
result = Math.max(las[i][0], las[i][1]);
}
} }
return result; return result;
} }
public static void main(String[] args) {
int[] arr = {10, 22, 9, 33, 49, 50, 31, 60};
int n = arr.length;
System.out.println("Length of Longest "
+ "alternating subsequence is " + alternatingLength(arr, n));
}
} }

View File

@ -0,0 +1,22 @@
package com.thealgorithms.dynamicprogramming;
import static org.junit.jupiter.api.Assertions.assertEquals;
import java.util.stream.Stream;
import org.junit.jupiter.params.ParameterizedTest;
import org.junit.jupiter.params.provider.Arguments;
import org.junit.jupiter.params.provider.MethodSource;
public class LongestAlternatingSubsequenceTest {
@ParameterizedTest
@MethodSource("provideTestCases")
void testAlternatingLength(int[] arr, int expected) {
assertEquals(expected, LongestAlternatingSubsequence.alternatingLength(arr, arr.length));
}
private static Stream<Arguments> provideTestCases() {
return Stream.of(Arguments.of(new int[] {1}, 1), Arguments.of(new int[] {1, 2}, 2), Arguments.of(new int[] {2, 1}, 2), Arguments.of(new int[] {1, 3, 2, 4, 3, 5}, 6), Arguments.of(new int[] {1, 2, 3, 4, 5}, 2), Arguments.of(new int[] {5, 4, 3, 2, 1}, 2),
Arguments.of(new int[] {10, 22, 9, 33, 49, 50, 31, 60}, 6), Arguments.of(new int[] {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, 2));
}
}