Heap Sort: Simplify (#3777)

* bug fix for CircularBuffer + refactoring + add unit tests

* change Insertion sort to classical implementation + add isSorted function to SortUtils + add SortUtilsRandomGenerator for generating random values and arrays

* little fix

* simplify heap sort

* Update src/main/java/com/thealgorithms/sorts/HeapSort.java

* Update src/main/java/com/thealgorithms/sorts/HeapSort.java

Co-authored-by: Debasish Biswas <debasishbsws.abc@gmail.com>
This commit is contained in:
Narek Karapetian 2022-11-25 09:03:04 -08:00 committed by GitHub
parent 72468cc707
commit 7692e8f47d
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 124 additions and 134 deletions

View File

@ -1,126 +1,56 @@
package com.thealgorithms.sorts;
import static com.thealgorithms.sorts.SortUtils.*;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
/**
* Heap Sort Algorithm Implements MinHeap
* Heap Sort Algorithm Implementation
*
* @author Podshivalov Nikita (https://github.com/nikitap492)
* @see <a href="https://en.wikipedia.org/wiki/Heapsort">Heap Sort Algorithm</a>
*/
public class HeapSort implements SortAlgorithm {
private static class Heap<T extends Comparable<T>> {
/**
* Array to store heap
*/
private T[] heap;
/**
* Constructor
*
* @param heap array of unordered integers
*/
public Heap(T[] heap) {
this.heap = heap;
}
/**
* Heapifies subtree from top as root to last as last child
*
* @param rootIndex index of root
* @param lastChild index of last child
*/
private void heapSubtree(int rootIndex, int lastChild) {
int leftIndex = rootIndex * 2 + 1;
int rightIndex = rootIndex * 2 + 2;
T root = heap[rootIndex];
if (rightIndex <= lastChild) { // if has right and left children
T left = heap[leftIndex];
T right = heap[rightIndex];
if (less(left, right) && less(left, root)) {
swap(heap, leftIndex, rootIndex);
heapSubtree(leftIndex, lastChild);
} else if (less(right, root)) {
swap(heap, rightIndex, rootIndex);
heapSubtree(rightIndex, lastChild);
}
} else if (leftIndex <= lastChild) { // if no right child, but has left child
T left = heap[leftIndex];
if (less(left, root)) {
swap(heap, leftIndex, rootIndex);
heapSubtree(leftIndex, lastChild);
}
}
}
/**
* Makes heap with root as root
*
* @param root index of root of heap
*/
private void makeMinHeap(int root) {
int leftIndex = root * 2 + 1;
int rightIndex = root * 2 + 2;
boolean hasLeftChild = leftIndex < heap.length;
boolean hasRightChild = rightIndex < heap.length;
if (hasRightChild) { // if has left and right
makeMinHeap(leftIndex);
makeMinHeap(rightIndex);
heapSubtree(root, heap.length - 1);
} else if (hasLeftChild) {
heapSubtree(root, heap.length - 1);
}
}
/**
* Gets the root of heap
*
* @return root of heap
*/
private T getRoot(int size) {
swap(heap, 0, size);
heapSubtree(0, size - 1);
return heap[size]; // return old root
}
}
/**
* For simplicity, we are considering the heap root index as 1 instead of 0.
* It simplifies future calculations. Because of that we are decreasing the
* provided indexes by 1 in {@link #swap(Object[], int, int)} and
* {@link #less(Comparable[], int, int)} functions.
*/
@Override
public <T extends Comparable<T>> T[] sort(T[] unsorted) {
return sort(Arrays.asList(unsorted)).toArray(unsorted);
}
@Override
public <T extends Comparable<T>> List<T> sort(List<T> unsorted) {
int size = unsorted.size();
@SuppressWarnings("unchecked")
Heap<T> heap = new Heap<>(
unsorted.toArray((T[]) new Comparable[unsorted.size()])
);
heap.makeMinHeap(0); // make min heap using index 0 as root.
List<T> sorted = new ArrayList<>(size);
while (size > 0) {
T min = heap.getRoot(--size);
sorted.add(min);
int n = unsorted.length;
heapify(unsorted, n);
while (n > 1) {
swap(unsorted, 1, n--);
siftDown(unsorted, 1, n);
}
return sorted;
return unsorted;
}
/**
* Main method
*
* @param args the command line arguments
*/
public static void main(String[] args) {
Integer[] heap = { 4, 23, 6, 78, 1, 54, 231, 9, 12 };
HeapSort heapSort = new HeapSort();
print(heapSort.sort(heap));
private static <T extends Comparable<T>> void heapify(T[] unsorted, int n) {
for (int k = n / 2; k >= 1; k--) {
siftDown(unsorted, k, n);
}
}
private static <T extends Comparable<T>> void siftDown(T[] unsorted, int k, int n) {
while (2 * k <= n) {
int j = 2 * k;
if (j < n && less(unsorted, j, j + 1)) {
j++;
}
if (!less(unsorted, k, j)) {
break;
}
swap(unsorted, k, j);
k = j;
}
}
private static <T> void swap(T[] array, int idx, int idy) {
T swap = array[idx - 1];
array[idx - 1] = array[idy - 1];
array[idy - 1] = swap;
}
private static <T extends Comparable<T>> boolean less(T[] array, int idx, int idy) {
return array[idx - 1].compareTo(array[idy - 1]) < 0;
}
}

View File

@ -1,35 +1,95 @@
package com.thealgorithms.sorts;
import static org.junit.jupiter.api.Assertions.assertArrayEquals;
import static org.junit.jupiter.api.Assertions.assertTrue;
import org.junit.jupiter.api.BeforeEach;
import org.junit.jupiter.api.Test;
public class HeapSortTest {
private HeapSort heapSort = new HeapSort();
@Test
void testHeapSortCase1() {
Integer[] array = { 49, 4, 36, 9, 144, 1 };
Integer[] sorted = heapSort.sort(array);
Integer[] expected = { 1, 4, 9, 36, 49, 144 };
assertArrayEquals(expected, sorted);
private HeapSort heapSort;
@BeforeEach
void setUp() {
heapSort = new HeapSort();
}
@Test
void testHeapSortCase2() {
Integer[] array = { };
@Test
void shouldAcceptWhenEmptyArrayIsPassed() {
Integer[] array = new Integer[]{};
Integer[] expected = new Integer[]{};
Integer[] sorted = heapSort.sort(array);
Integer[] expected = { };
assertArrayEquals(expected, sorted);
}
@Test
void testHeapSortCase3 () {
Integer[] array = { -3, 5, 3, 4, 3, 7, 40, -20, 30, 0 };
Integer[] sorted = heapSort.sort(array);
Integer[] expected = { -20, -3, 0, 3, 3, 4, 5, 7, 30, 40 };
assertArrayEquals(expected, sorted);
}
@Test
void shouldAcceptWhenSingleValuedArrayIsPassed() {
Integer[] array = new Integer[]{2};
Integer[] expected = new Integer[]{2};
Integer[] sorted = heapSort.sort(array);
assertArrayEquals(expected, sorted);
}
@Test
void shouldAcceptWhenArrayWithAllPositiveValuesIsPassed() {
Integer[] array = new Integer[]{60, 7, 55, 9, 999, 3};
Integer[] expected = new Integer[]{3, 7, 9, 55, 60, 999};
Integer[] sorted = heapSort.sort(array);
assertArrayEquals(expected, sorted);
}
@Test
void shouldAcceptWhenArrayWithAllNegativeValuesIsPassed() {
Integer[] array = new Integer[]{-60, -7, -55, -9, -999, -3};
Integer[] expected = new Integer[]{-999, -60, -55, -9, -7, -3};
Integer[] sorted = heapSort.sort(array);
assertArrayEquals(expected, sorted);
}
@Test
void shouldAcceptWhenArrayWithRealNumberValuesIsPassed() {
Integer[] array = new Integer[]{60, -7, 55, 9, -999, -3};
Integer[] expected = new Integer[]{-999, -7, -3, 9, 55, 60};
Integer[] sorted = heapSort.sort(array);
assertArrayEquals(expected, sorted);
}
@Test
void shouldAcceptWhenArrayWithDuplicateValueIsPassed() {
Integer[] array = new Integer[]{60, 7, 55, 55, 999, 3};
Integer[] expected = new Integer[]{3, 7, 55, 55, 60, 999};
Integer[] sorted = heapSort.sort(array);
assertArrayEquals(expected, sorted);
}
@Test
void shouldAcceptWhenStringValueArrayIsPassed() {
String[] array = {"z", "a", "x", "b", "y"};
String[] expected = {"a", "b", "x", "y", "z"};
String[] sorted = heapSort.sort(array);
assertArrayEquals(expected, sorted);
}
@Test
void shouldAcceptWhenRandomArrayIsPassed() {
int randomSize = SortUtilsRandomGenerator.generateInt(10_000);
Double[] array = SortUtilsRandomGenerator.generateArray(randomSize);
Double[] sorted = heapSort.sort(array);
assertTrue(SortUtils.isSorted(sorted));
}
}