parent
bb670a2ceb
commit
8b92c3fdbe
@ -1,16 +1,15 @@
|
||||
/**
|
||||
*
|
||||
*
|
||||
*/
|
||||
package heaps;
|
||||
package Heaps;
|
||||
|
||||
/**
|
||||
* @author Nicolas Renard
|
||||
* Exception to be thrown if the getElement method is used on an empty heap.
|
||||
*
|
||||
*/
|
||||
@SuppressWarnings("serial")
|
||||
public class EmptyHeapException extends Exception {
|
||||
|
||||
|
||||
public EmptyHeapException(String message) {
|
||||
super(message);
|
||||
}
|
||||
|
@ -1,4 +1,4 @@
|
||||
package heaps;
|
||||
package Heaps;
|
||||
|
||||
/**
|
||||
* Interface common to heap data structures.<br>
|
||||
@ -10,32 +10,31 @@ package heaps;
|
||||
* max-heap).</p>
|
||||
* <p>All heap-related operations (inserting or deleting an element, extracting the min or max) are performed in
|
||||
* O(log n) time.</p>
|
||||
*
|
||||
* @author Nicolas Renard
|
||||
*
|
||||
*
|
||||
*/
|
||||
public interface Heap {
|
||||
|
||||
|
||||
/**
|
||||
*
|
||||
* @return the top element in the heap, the one with lowest key for min-heap or with
|
||||
* the highest key for max-heap
|
||||
* @throws Exception if heap is empty
|
||||
* @throws EmptyHeapException if heap is empty
|
||||
*/
|
||||
public abstract HeapElement getElement() throws EmptyHeapException;
|
||||
HeapElement getElement() throws EmptyHeapException;
|
||||
|
||||
/**
|
||||
* Inserts an element in the heap. Adds it to then end and toggle it until it finds its
|
||||
* right position.
|
||||
*
|
||||
*
|
||||
* @param element an instance of the HeapElement class.
|
||||
*/
|
||||
public abstract void insertElement(HeapElement element);
|
||||
|
||||
void insertElement(HeapElement element);
|
||||
|
||||
/**
|
||||
* Delete an element in the heap.
|
||||
*
|
||||
*
|
||||
* @param elementIndex int containing the position in the heap of the element to be deleted.
|
||||
*/
|
||||
public abstract void deleteElement(int elementIndex);
|
||||
void deleteElement(int elementIndex);
|
||||
|
||||
}
|
||||
}
|
@ -1,7 +1,7 @@
|
||||
/**
|
||||
*
|
||||
*
|
||||
*/
|
||||
package heaps;
|
||||
package Heaps;
|
||||
|
||||
import java.lang.Double;
|
||||
import java.lang.Object;
|
||||
@ -12,116 +12,110 @@ import java.lang.Object;
|
||||
* or double, either primitive type or object) and any kind of IMMUTABLE object the user sees fit
|
||||
* to carry any information he/she likes. Be aware that the use of a mutable object might
|
||||
* jeopardize the integrity of this information. </p>
|
||||
* @author Nicolas Renard
|
||||
*
|
||||
* @author Nicolas Renard
|
||||
*/
|
||||
public class HeapElement {
|
||||
private final double key;
|
||||
private final Object additionalInfo;
|
||||
|
||||
|
||||
// Constructors
|
||||
|
||||
/**
|
||||
*
|
||||
* @param key : a number of primitive type 'double'
|
||||
* @param key : a number of primitive type 'double'
|
||||
* @param info : any kind of IMMUTABLE object. May be null, since the purpose is only to carry
|
||||
* additional information of use for the user
|
||||
* additional information of use for the user
|
||||
*/
|
||||
public HeapElement(double key, Object info) {
|
||||
this.key = key;
|
||||
this.additionalInfo = info;
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
*
|
||||
* @param key : a number of primitive type 'int'
|
||||
* @param key : a number of primitive type 'int'
|
||||
* @param info : any kind of IMMUTABLE object. May be null, since the purpose is only to carry
|
||||
* additional information of use for the user
|
||||
* additional information of use for the user
|
||||
*/
|
||||
public HeapElement(int key, Object info) {
|
||||
this.key = key;
|
||||
this.additionalInfo = info;
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
*
|
||||
* @param key : a number of object type 'Integer'
|
||||
* @param key : a number of object type 'Integer'
|
||||
* @param info : any kind of IMMUTABLE object. May be null, since the purpose is only to carry
|
||||
* additional information of use for the user
|
||||
* additional information of use for the user
|
||||
*/
|
||||
public HeapElement(Integer key, Object info) {
|
||||
this.key = key;
|
||||
this.additionalInfo = info;
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
*
|
||||
* @param key : a number of object type 'Double'
|
||||
* @param key : a number of object type 'Double'
|
||||
* @param info : any kind of IMMUTABLE object. May be null, since the purpose is only to carry
|
||||
* additional information of use for the user
|
||||
* additional information of use for the user
|
||||
*/
|
||||
public HeapElement(Double key, Object info) {
|
||||
this.key = key;
|
||||
this.additionalInfo = info;
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
*
|
||||
* @param key : a number of primitive type 'double'
|
||||
*/
|
||||
public HeapElement(double key) {
|
||||
this.key = key;
|
||||
this.additionalInfo = null;
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
*
|
||||
* @param key : a number of primitive type 'int'
|
||||
*/
|
||||
public HeapElement(int key) {
|
||||
this.key = key;
|
||||
this.additionalInfo = null;
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
*
|
||||
* @param key : a number of object type 'Integer'
|
||||
*/
|
||||
public HeapElement(Integer key) {
|
||||
this.key = key;
|
||||
this.additionalInfo = null;
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
*
|
||||
* @param key : a number of object type 'Double'
|
||||
*/
|
||||
public HeapElement(Double key) {
|
||||
this.key = key;
|
||||
this.additionalInfo = null;
|
||||
}
|
||||
|
||||
|
||||
// Getters
|
||||
|
||||
/**
|
||||
* @return the object containing the additional info provided by the user.
|
||||
*/
|
||||
public Object getInfo() {
|
||||
return additionalInfo;
|
||||
}
|
||||
|
||||
/**
|
||||
* @return the key value of the element
|
||||
*/
|
||||
public double getKey() {
|
||||
return key;
|
||||
}
|
||||
|
||||
|
||||
// Overridden object methods
|
||||
|
||||
|
||||
public String toString() {
|
||||
return "Key: " + key + " - " +additionalInfo.toString();
|
||||
return "Key: " + key + " - " + additionalInfo.toString();
|
||||
}
|
||||
|
||||
/**
|
||||
*
|
||||
* @param otherHeapElement
|
||||
* @return true if the keys on both elements are identical and the additional info objects
|
||||
* are identical.
|
||||
|
@ -1,4 +1,4 @@
|
||||
package heaps;
|
||||
package Heaps;
|
||||
|
||||
import java.util.ArrayList;
|
||||
import java.util.List;
|
||||
@ -6,66 +6,71 @@ import java.util.List;
|
||||
/**
|
||||
* Heap tree where a node's key is higher than or equal to its parent's and lower than or equal
|
||||
* to its children's.
|
||||
* @author Nicolas Renard
|
||||
*
|
||||
* @author Nicolas Renard
|
||||
*/
|
||||
public class MaxHeap implements Heap {
|
||||
|
||||
|
||||
private final List<HeapElement> maxHeap;
|
||||
|
||||
public MaxHeap(List<HeapElement> listElements) throws Exception {
|
||||
maxHeap = new ArrayList<HeapElement>();
|
||||
|
||||
public MaxHeap(List<HeapElement> listElements) {
|
||||
maxHeap = new ArrayList<>();
|
||||
for (HeapElement heapElement : listElements) {
|
||||
if (heapElement != null) insertElement(heapElement);
|
||||
else System.out.println("Null element. Not added to heap");
|
||||
}
|
||||
if (maxHeap.size() == 0) System.out.println("No element has been added, empty heap.");
|
||||
}
|
||||
|
||||
// Get the element at a given index. The key for the list is equal to index value - 1
|
||||
}
|
||||
|
||||
/**
|
||||
* Get the element at a given index. The key for the list is equal to index value - 1
|
||||
*
|
||||
* @param elementIndex index
|
||||
* @return heapElement
|
||||
*/
|
||||
public HeapElement getElement(int elementIndex) {
|
||||
if ((elementIndex <= 0) && (elementIndex > maxHeap.size())) throw new IndexOutOfBoundsException("Index out of heap range");
|
||||
if ((elementIndex <= 0) || (elementIndex > maxHeap.size()))
|
||||
throw new IndexOutOfBoundsException("Index out of heap range");
|
||||
return maxHeap.get(elementIndex - 1);
|
||||
}
|
||||
|
||||
|
||||
// Get the key of the element at a given index
|
||||
private double getElementKey(int elementIndex) {
|
||||
return maxHeap.get(elementIndex - 1).getKey();
|
||||
}
|
||||
|
||||
|
||||
// Swaps two elements in the heap
|
||||
private void swap(int index1, int index2) {
|
||||
HeapElement temporaryElement = maxHeap.get(index1 - 1);
|
||||
maxHeap.set(index1 - 1, maxHeap.get(index2 - 1));
|
||||
maxHeap.set(index2 - 1, temporaryElement);
|
||||
}
|
||||
|
||||
// Toggle an element up to its right place as long as its key is lower than its parent's
|
||||
|
||||
// Toggle an element up to its right place as long as its key is lower than its parent's
|
||||
private void toggleUp(int elementIndex) {
|
||||
double key = maxHeap.get(elementIndex - 1).getKey();
|
||||
while (getElementKey((int) Math.floor(elementIndex/2)) < key) {
|
||||
swap(elementIndex, (int) Math.floor(elementIndex/2));
|
||||
elementIndex = (int) Math.floor(elementIndex/2);
|
||||
while (getElementKey((int) Math.floor(elementIndex / 2)) < key) {
|
||||
swap(elementIndex, (int) Math.floor(elementIndex / 2));
|
||||
elementIndex = (int) Math.floor(elementIndex / 2);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// Toggle an element down to its right place as long as its key is higher
|
||||
// than any of its children's
|
||||
// than any of its children's
|
||||
private void toggleDown(int elementIndex) {
|
||||
double key = maxHeap.get(elementIndex - 1).getKey();
|
||||
boolean wrongOrder = (key < getElementKey(elementIndex*2)) || (key < getElementKey(Math.min(elementIndex*2, maxHeap.size())));
|
||||
while ((2*elementIndex <= maxHeap.size()) && wrongOrder) {
|
||||
boolean wrongOrder = (key < getElementKey(elementIndex * 2)) || (key < getElementKey(Math.min(elementIndex * 2, maxHeap.size())));
|
||||
while ((2 * elementIndex <= maxHeap.size()) && wrongOrder) {
|
||||
// Check whether it shall swap the element with its left child or its right one if any.
|
||||
if ((2*elementIndex < maxHeap.size()) && (getElementKey(elementIndex*2 + 1) > getElementKey(elementIndex*2))) {
|
||||
swap(elementIndex, 2*elementIndex + 1);
|
||||
elementIndex = 2*elementIndex + 1;
|
||||
if ((2 * elementIndex < maxHeap.size()) && (getElementKey(elementIndex * 2 + 1) > getElementKey(elementIndex * 2))) {
|
||||
swap(elementIndex, 2 * elementIndex + 1);
|
||||
elementIndex = 2 * elementIndex + 1;
|
||||
} else {
|
||||
swap(elementIndex, 2 * elementIndex);
|
||||
elementIndex = 2 * elementIndex;
|
||||
}
|
||||
else {
|
||||
swap(elementIndex, 2*elementIndex);
|
||||
elementIndex = 2*elementIndex;
|
||||
}
|
||||
wrongOrder = (key < getElementKey(elementIndex*2)) || (key < getElementKey(Math.min(elementIndex*2, maxHeap.size())));
|
||||
|
||||
wrongOrder = (key < getElementKey(elementIndex * 2)) || (key < getElementKey(Math.min(elementIndex * 2, maxHeap.size())));
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
@ -84,21 +89,23 @@ public class MaxHeap implements Heap {
|
||||
|
||||
@Override
|
||||
public void deleteElement(int elementIndex) {
|
||||
if (maxHeap.isEmpty())
|
||||
try {
|
||||
throw new EmptyHeapException("Attempt to delete an element from an empty heap");
|
||||
} catch (EmptyHeapException e) {
|
||||
e.printStackTrace();
|
||||
}
|
||||
if ((elementIndex > maxHeap.size()) && (elementIndex <= 0)) throw new IndexOutOfBoundsException("Index out of heap range");
|
||||
if (maxHeap.isEmpty())
|
||||
try {
|
||||
throw new EmptyHeapException("Attempt to delete an element from an empty heap");
|
||||
} catch (EmptyHeapException e) {
|
||||
e.printStackTrace();
|
||||
}
|
||||
if ((elementIndex > maxHeap.size()) || (elementIndex <= 0))
|
||||
throw new IndexOutOfBoundsException("Index out of heap range");
|
||||
// The last element in heap replaces the one to be deleted
|
||||
maxHeap.set(elementIndex - 1, getElement(maxHeap.size()));
|
||||
maxHeap.remove(maxHeap.size());
|
||||
// Shall the new element be moved up...
|
||||
if (getElementKey(elementIndex) > getElementKey((int) Math.floor(elementIndex/2))) toggleUp(elementIndex);
|
||||
// ... or down ?
|
||||
else if (((2*elementIndex <= maxHeap.size()) && (getElementKey(elementIndex) < getElementKey(elementIndex*2))) ||
|
||||
((2*elementIndex < maxHeap.size()) && (getElementKey(elementIndex) < getElementKey(elementIndex*2)))) toggleDown(elementIndex);
|
||||
if (getElementKey(elementIndex) > getElementKey((int) Math.floor(elementIndex / 2))) toggleUp(elementIndex);
|
||||
// ... or down ?
|
||||
else if (((2 * elementIndex <= maxHeap.size()) && (getElementKey(elementIndex) < getElementKey(elementIndex * 2))) ||
|
||||
((2 * elementIndex < maxHeap.size()) && (getElementKey(elementIndex) < getElementKey(elementIndex * 2))))
|
||||
toggleDown(elementIndex);
|
||||
}
|
||||
|
||||
@Override
|
||||
@ -109,7 +116,4 @@ public class MaxHeap implements Heap {
|
||||
throw new EmptyHeapException("Heap is empty. Error retrieving element");
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
}
|
@ -1,7 +1,7 @@
|
||||
/**
|
||||
*
|
||||
*
|
||||
*/
|
||||
package heaps;
|
||||
package Heaps;
|
||||
|
||||
import java.util.ArrayList;
|
||||
import java.util.List;
|
||||
@ -9,66 +9,66 @@ import java.util.List;
|
||||
/**
|
||||
* Heap tree where a node's key is higher than or equal to its parent's and lower than or equal
|
||||
* to its children's.
|
||||
* @author Nicolas Renard
|
||||
*
|
||||
* @author Nicolas Renard
|
||||
*/
|
||||
public class MinHeap implements Heap {
|
||||
|
||||
|
||||
private final List<HeapElement> minHeap;
|
||||
|
||||
public MinHeap(List<HeapElement> listElements) throws Exception {
|
||||
minHeap = new ArrayList<HeapElement>();
|
||||
|
||||
public MinHeap(List<HeapElement> listElements) {
|
||||
minHeap = new ArrayList<>();
|
||||
for (HeapElement heapElement : listElements) {
|
||||
if (heapElement != null) insertElement(heapElement);
|
||||
else System.out.println("Null element. Not added to heap");
|
||||
}
|
||||
if (minHeap.size() == 0) System.out.println("No element has been added, empty heap.");
|
||||
}
|
||||
|
||||
|
||||
// Get the element at a given index. The key for the list is equal to index value - 1
|
||||
public HeapElement getElement(int elementIndex) {
|
||||
if ((elementIndex <= 0) && (elementIndex > minHeap.size())) throw new IndexOutOfBoundsException("Index out of heap range");
|
||||
if ((elementIndex <= 0) || (elementIndex > minHeap.size()))
|
||||
throw new IndexOutOfBoundsException("Index out of heap range");
|
||||
return minHeap.get(elementIndex - 1);
|
||||
}
|
||||
|
||||
|
||||
// Get the key of the element at a given index
|
||||
private double getElementKey(int elementIndex) {
|
||||
return minHeap.get(elementIndex - 1).getKey();
|
||||
}
|
||||
|
||||
|
||||
// Swaps two elements in the heap
|
||||
private void swap(int index1, int index2) {
|
||||
HeapElement temporaryElement = minHeap.get(index1 - 1);
|
||||
minHeap.set(index1 - 1, minHeap.get(index2 - 1));
|
||||
minHeap.set(index2 - 1, temporaryElement);
|
||||
}
|
||||
|
||||
// Toggle an element up to its right place as long as its key is lower than its parent's
|
||||
|
||||
// Toggle an element up to its right place as long as its key is lower than its parent's
|
||||
private void toggleUp(int elementIndex) {
|
||||
double key = minHeap.get(elementIndex - 1).getKey();
|
||||
while (getElementKey((int) Math.floor(elementIndex/2)) > key) {
|
||||
swap(elementIndex, (int) Math.floor(elementIndex/2));
|
||||
elementIndex = (int) Math.floor(elementIndex/2);
|
||||
while (getElementKey((int) Math.floor(elementIndex / 2)) > key) {
|
||||
swap(elementIndex, (int) Math.floor(elementIndex / 2));
|
||||
elementIndex = (int) Math.floor(elementIndex / 2);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// Toggle an element down to its right place as long as its key is higher
|
||||
// than any of its children's
|
||||
// than any of its children's
|
||||
private void toggleDown(int elementIndex) {
|
||||
double key = minHeap.get(elementIndex - 1).getKey();
|
||||
boolean wrongOrder = (key > getElementKey(elementIndex*2)) || (key > getElementKey(Math.min(elementIndex*2, minHeap.size())));
|
||||
while ((2*elementIndex <= minHeap.size()) && wrongOrder) {
|
||||
boolean wrongOrder = (key > getElementKey(elementIndex * 2)) || (key > getElementKey(Math.min(elementIndex * 2, minHeap.size())));
|
||||
while ((2 * elementIndex <= minHeap.size()) && wrongOrder) {
|
||||
// Check whether it shall swap the element with its left child or its right one if any.
|
||||
if ((2*elementIndex < minHeap.size()) && (getElementKey(elementIndex*2 + 1) < getElementKey(elementIndex*2))) {
|
||||
swap(elementIndex, 2*elementIndex + 1);
|
||||
elementIndex = 2*elementIndex + 1;
|
||||
if ((2 * elementIndex < minHeap.size()) && (getElementKey(elementIndex * 2 + 1) < getElementKey(elementIndex * 2))) {
|
||||
swap(elementIndex, 2 * elementIndex + 1);
|
||||
elementIndex = 2 * elementIndex + 1;
|
||||
} else {
|
||||
swap(elementIndex, 2 * elementIndex);
|
||||
elementIndex = 2 * elementIndex;
|
||||
}
|
||||
else {
|
||||
swap(elementIndex, 2*elementIndex);
|
||||
elementIndex = 2*elementIndex;
|
||||
}
|
||||
wrongOrder = (key > getElementKey(elementIndex*2)) || (key > getElementKey(Math.min(elementIndex*2, minHeap.size())));
|
||||
|
||||
wrongOrder = (key > getElementKey(elementIndex * 2)) || (key > getElementKey(Math.min(elementIndex * 2, minHeap.size())));
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
@ -87,23 +87,25 @@ public class MinHeap implements Heap {
|
||||
|
||||
@Override
|
||||
public void deleteElement(int elementIndex) {
|
||||
if (minHeap.isEmpty())
|
||||
try {
|
||||
throw new EmptyHeapException("Attempt to delete an element from an empty heap");
|
||||
} catch (EmptyHeapException e) {
|
||||
e.printStackTrace();
|
||||
}
|
||||
if ((elementIndex > minHeap.size()) && (elementIndex <= 0)) throw new IndexOutOfBoundsException("Index out of heap range");
|
||||
if (minHeap.isEmpty())
|
||||
try {
|
||||
throw new EmptyHeapException("Attempt to delete an element from an empty heap");
|
||||
} catch (EmptyHeapException e) {
|
||||
e.printStackTrace();
|
||||
}
|
||||
if ((elementIndex > minHeap.size()) || (elementIndex <= 0))
|
||||
throw new IndexOutOfBoundsException("Index out of heap range");
|
||||
// The last element in heap replaces the one to be deleted
|
||||
minHeap.set(elementIndex - 1, getElement(minHeap.size()));
|
||||
minHeap.remove(minHeap.size());
|
||||
// Shall the new element be moved up...
|
||||
if (getElementKey(elementIndex) < getElementKey((int) Math.floor(elementIndex/2))) toggleUp(elementIndex);
|
||||
// ... or down ?
|
||||
else if (((2*elementIndex <= minHeap.size()) && (getElementKey(elementIndex) > getElementKey(elementIndex*2))) ||
|
||||
((2*elementIndex < minHeap.size()) && (getElementKey(elementIndex) > getElementKey(elementIndex*2)))) toggleDown(elementIndex);
|
||||
if (getElementKey(elementIndex) < getElementKey((int) Math.floor(elementIndex / 2))) toggleUp(elementIndex);
|
||||
// ... or down ?
|
||||
else if (((2 * elementIndex <= minHeap.size()) && (getElementKey(elementIndex) > getElementKey(elementIndex * 2))) ||
|
||||
((2 * elementIndex < minHeap.size()) && (getElementKey(elementIndex) > getElementKey(elementIndex * 2))))
|
||||
toggleDown(elementIndex);
|
||||
}
|
||||
|
||||
|
||||
@Override
|
||||
public HeapElement getElement() throws EmptyHeapException {
|
||||
try {
|
||||
@ -112,4 +114,4 @@ public class MinHeap implements Heap {
|
||||
throw new EmptyHeapException("Heap is empty. Error retrieving element");
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
@ -1,13 +1,13 @@
|
||||
|
||||
package Heaps;
|
||||
/* Minimum Priority Queue
|
||||
* It is a part of heap data structure
|
||||
* A heap is a specific tree based data structure
|
||||
* in which all the nodes of tree are in a specific order.
|
||||
* that is the children are arranged in some
|
||||
* respect of their parents, can either be greater
|
||||
* or less than the parent. This makes it a min priority queue
|
||||
* or max priority queue.
|
||||
*/
|
||||
* It is a part of heap data structure
|
||||
* A heap is a specific tree based data structure
|
||||
* in which all the nodes of tree are in a specific order.
|
||||
* that is the children are arranged in some
|
||||
* respect of their parents, can either be greater
|
||||
* or less than the parent. This makes it a min priority queue
|
||||
* or max priority queue.
|
||||
*/
|
||||
|
||||
// Functions: insert, delete, peek, isEmpty, print, heapSort, sink
|
||||
|
||||
@ -16,15 +16,15 @@ public class MinPriorityQueue {
|
||||
private int capacity;
|
||||
private int size;
|
||||
|
||||
// calss the constructor and initializes the capacity
|
||||
// calss the constructor and initializes the capacity
|
||||
MinPriorityQueue(int c) {
|
||||
this.capacity = c;
|
||||
this.size = 0;
|
||||
this.heap = new int[c + 1];
|
||||
}
|
||||
|
||||
// inserts the key at the end and rearranges it
|
||||
// so that the binary heap is in appropriate order
|
||||
// inserts the key at the end and rearranges it
|
||||
// so that the binary heap is in appropriate order
|
||||
public void insert(int key) {
|
||||
if (this.isFull())
|
||||
return;
|
||||
@ -41,41 +41,41 @@ public class MinPriorityQueue {
|
||||
this.size++;
|
||||
}
|
||||
|
||||
// returns the highest priority value
|
||||
// returns the highest priority value
|
||||
public int peek() {
|
||||
return this.heap[1];
|
||||
}
|
||||
|
||||
// returns boolean value whether the heap is empty or not
|
||||
// returns boolean value whether the heap is empty or not
|
||||
public boolean isEmpty() {
|
||||
if (0 == this.size)
|
||||
return true;
|
||||
return false;
|
||||
}
|
||||
|
||||
// returns boolean value whether the heap is full or not
|
||||
// returns boolean value whether the heap is full or not
|
||||
public boolean isFull() {
|
||||
if (this.size == this.capacity)
|
||||
return true;
|
||||
return false;
|
||||
}
|
||||
|
||||
// prints the heap
|
||||
// prints the heap
|
||||
public void print() {
|
||||
for (int i = 1; i <= this.capacity; i++)
|
||||
System.out.print(this.heap[i] + " ");
|
||||
System.out.println();
|
||||
}
|
||||
|
||||
// heap sorting can be done by performing
|
||||
// delete function to the number of times of the size of the heap
|
||||
// it returns reverse sort because it is a min priority queue
|
||||
// heap sorting can be done by performing
|
||||
// delete function to the number of times of the size of the heap
|
||||
// it returns reverse sort because it is a min priority queue
|
||||
public void heapSort() {
|
||||
for (int i = 1; i < this.capacity; i++)
|
||||
this.delete();
|
||||
}
|
||||
|
||||
// this function reorders the heap after every delete function
|
||||
// this function reorders the heap after every delete function
|
||||
private void sink() {
|
||||
int k = 1;
|
||||
while (2 * k <= this.size || 2 * k + 1 <= this.size) {
|
||||
@ -103,7 +103,7 @@ public class MinPriorityQueue {
|
||||
}
|
||||
}
|
||||
|
||||
// deletes the highest priority value from the heap
|
||||
// deletes the highest priority value from the heap
|
||||
public int delete() {
|
||||
int min = this.heap[1];
|
||||
this.heap[1] = this.heap[this.size];
|
||||
|
@ -1,12 +1,11 @@
|
||||
import java.util.Scanner;
|
||||
|
||||
/**
|
||||
*
|
||||
* @author Afrizal Fikri (https://github.com/icalF)
|
||||
*
|
||||
* @author Libin Yang (https://github.com/yanglbme)
|
||||
*/
|
||||
public class LongestIncreasingSubsequence {
|
||||
public static void main(String[] args) throws Exception {
|
||||
public static void main(String[] args) {
|
||||
|
||||
Scanner sc = new Scanner(System.in);
|
||||
int n = sc.nextInt();
|
||||
@ -20,7 +19,7 @@ public class LongestIncreasingSubsequence {
|
||||
}
|
||||
|
||||
private static int upperBound(int[] ar, int l, int r, int key) {
|
||||
while (l < r-1) {
|
||||
while (l < r - 1) {
|
||||
int m = (l + r) / 2;
|
||||
if (ar[m] >= key)
|
||||
r = m;
|
||||
@ -35,10 +34,12 @@ public class LongestIncreasingSubsequence {
|
||||
int N = array.length;
|
||||
if (N == 0)
|
||||
return 0;
|
||||
|
||||
|
||||
int[] tail = new int[N];
|
||||
int length = 1; // always points empty slot in tail
|
||||
|
||||
|
||||
// always points empty slot in tail
|
||||
int length = 1;
|
||||
|
||||
tail[0] = array[0];
|
||||
for (int i = 1; i < N; i++) {
|
||||
|
||||
@ -46,17 +47,17 @@ public class LongestIncreasingSubsequence {
|
||||
if (array[i] < tail[0])
|
||||
tail[0] = array[i];
|
||||
|
||||
// array[i] extends largest subsequence
|
||||
else if (array[i] > tail[length-1])
|
||||
// array[i] extends largest subsequence
|
||||
else if (array[i] > tail[length - 1])
|
||||
tail[length++] = array[i];
|
||||
|
||||
// array[i] will become end candidate of an existing subsequence or
|
||||
// Throw away larger elements in all LIS, to make room for upcoming grater elements than array[i]
|
||||
// (and also, array[i] would have already appeared in one of LIS, identify the location and replace it)
|
||||
// array[i] will become end candidate of an existing subsequence or
|
||||
// Throw away larger elements in all LIS, to make room for upcoming grater elements than array[i]
|
||||
// (and also, array[i] would have already appeared in one of LIS, identify the location and replace it)
|
||||
else
|
||||
tail[upperBound(tail, -1, length-1, array[i])] = array[i];
|
||||
tail[upperBound(tail, -1, length - 1, array[i])] = array[i];
|
||||
}
|
||||
|
||||
|
||||
return length;
|
||||
}
|
||||
}
|
@ -1,83 +1,82 @@
|
||||
/*
|
||||
@author : Mayank K Jha
|
||||
/**
|
||||
* @author Mayank K Jha
|
||||
*/
|
||||
|
||||
*/
|
||||
|
||||
import java.io.IOException;
|
||||
import java.util.Arrays;
|
||||
import java.util.Scanner;
|
||||
import java.util.Stack;
|
||||
|
||||
public class Dijkshtra {
|
||||
|
||||
public static void main(String[] args) throws IOException {
|
||||
public static void main(String[] args) {
|
||||
Scanner in = new Scanner(System.in);
|
||||
|
||||
// n = Number of nodes or vertices
|
||||
int n = in.nextInt();
|
||||
int n = in.nextInt();
|
||||
// m = Number of Edges
|
||||
int m = in.nextInt();
|
||||
int m = in.nextInt();
|
||||
|
||||
// Adjacency Matrix
|
||||
long w[][] = new long [n+1][n+1];
|
||||
long[][] w = new long[n + 1][n + 1];
|
||||
|
||||
//Initializing Matrix with Certain Maximum Value for path b/w any two vertices
|
||||
// Initializing Matrix with Certain Maximum Value for path b/w any two vertices
|
||||
for (long[] row : w) {
|
||||
Arrays.fill(row, 1000000l);
|
||||
Arrays.fill(row, 1000000L);
|
||||
}
|
||||
|
||||
/* From above,we Have assumed that,initially path b/w any two Pair of vertices is Infinite such that Infinite = 1000000l
|
||||
For simplicity , We can also take path Value = Long.MAX_VALUE , but i have taken Max Value = 1000000l */
|
||||
|
||||
// Taking Input as Edge Location b/w a pair of vertices
|
||||
for(int i = 0; i < m; i++) {
|
||||
int x = in.nextInt(),y=in.nextInt();
|
||||
long cmp = in.nextLong();
|
||||
for (int i = 0; i < m; i++) {
|
||||
int x = in.nextInt(), y = in.nextInt();
|
||||
long cmp = in.nextLong();
|
||||
|
||||
//Comparing previous edge value with current value - Cycle Case
|
||||
if(w[x][y] > cmp) {
|
||||
w[x][y] = cmp; w[y][x] = cmp;
|
||||
}
|
||||
// Comparing previous edge value with current value - Cycle Case
|
||||
if (w[x][y] > cmp) {
|
||||
w[x][y] = cmp;
|
||||
w[y][x] = cmp;
|
||||
}
|
||||
}
|
||||
|
||||
// Implementing Dijkshtra's Algorithm
|
||||
Stack<Integer> t = new Stack<Integer>();
|
||||
// Implementing Dijkshtra's Algorithm
|
||||
Stack<Integer> t = new Stack<>();
|
||||
int src = in.nextInt();
|
||||
|
||||
for(int i = 1; i <= n; i++) {
|
||||
if(i != src) {
|
||||
for (int i = 1; i <= n; i++) {
|
||||
if (i != src) {
|
||||
t.push(i);
|
||||
}
|
||||
}
|
||||
|
||||
Stack <Integer> p = new Stack<Integer>();
|
||||
Stack<Integer> p = new Stack<>();
|
||||
p.push(src);
|
||||
w[src][src] = 0;
|
||||
|
||||
while(!t.isEmpty()) {
|
||||
while (!t.isEmpty()) {
|
||||
int min = 989997979;
|
||||
int loc = -1;
|
||||
|
||||
for(int i = 0; i < t.size(); i++) {
|
||||
for (int i = 0; i < t.size(); i++) {
|
||||
w[src][t.elementAt(i)] = Math.min(w[src][t.elementAt(i)], w[src][p.peek()] + w[p.peek()][t.elementAt(i)]);
|
||||
if(w[src][t.elementAt(i)] <= min) {
|
||||
if (w[src][t.elementAt(i)] <= min) {
|
||||
min = (int) w[src][t.elementAt(i)];
|
||||
loc = i;
|
||||
}
|
||||
}
|
||||
p.push(t.elementAt(loc));
|
||||
t.removeElementAt(loc);
|
||||
}
|
||||
}
|
||||
|
||||
// Printing shortest path from the given source src
|
||||
for(int i = 1; i <= n; i++) {
|
||||
if(i != src && w[src][i] != 1000000l) {
|
||||
System.out.print(w[src][i] + " ");
|
||||
for (int i = 1; i <= n; i++) {
|
||||
if (i != src && w[src][i] != 1000000L) {
|
||||
System.out.print(w[src][i] + " ");
|
||||
}
|
||||
// Printing -1 if there is no path b/w given pair of edges
|
||||
else if (i != src) {
|
||||
System.out.print("-1" + " ");
|
||||
}
|
||||
}
|
||||
// Printing -1 if there is no path b/w given pair of edges
|
||||
else if(i != src) {
|
||||
System.out.print("-1" + " ");
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
@ -5,167 +5,174 @@ package Others;
|
||||
* Dijkstra's algorithm,is a graph search algorithm that solves the single-source
|
||||
* shortest path problem for a graph with nonnegative edge path costs, producing
|
||||
* a shortest path tree.
|
||||
*
|
||||
* <p>
|
||||
* NOTE: The inputs to Dijkstra's algorithm are a directed and weighted graph consisting
|
||||
* of 2 or more nodes, generally represented by an adjacency matrix or list, and a start node.
|
||||
*
|
||||
* <p>
|
||||
* Original source of code: https://rosettacode.org/wiki/Dijkstra%27s_algorithm#Java
|
||||
* Also most of the comments are from RosettaCode.
|
||||
*
|
||||
*/
|
||||
//import java.io.*;
|
||||
import java.util.*;
|
||||
public class Dijkstra {
|
||||
private static final Graph.Edge[] GRAPH = {
|
||||
new Graph.Edge("a", "b", 7), //Distance from node "a" to node "b" is 7. In the current Graph there is no way to move the other way (e,g, from "b" to "a"), a new edge would be needed for that
|
||||
new Graph.Edge("a", "c", 9),
|
||||
new Graph.Edge("a", "f", 14),
|
||||
new Graph.Edge("b", "c", 10),
|
||||
new Graph.Edge("b", "d", 15),
|
||||
new Graph.Edge("c", "d", 11),
|
||||
new Graph.Edge("c", "f", 2),
|
||||
new Graph.Edge("d", "e", 6),
|
||||
new Graph.Edge("e", "f", 9),
|
||||
};
|
||||
private static final String START = "a";
|
||||
private static final String END = "e";
|
||||
|
||||
/**
|
||||
* main function
|
||||
* Will run the code with "GRAPH" that was defined above.
|
||||
*/
|
||||
public static void main(String[] args) {
|
||||
Graph g = new Graph(GRAPH);
|
||||
g.dijkstra(START);
|
||||
g.printPath(END);
|
||||
//g.printAllPaths();
|
||||
}
|
||||
import java.util.*;
|
||||
|
||||
public class Dijkstra {
|
||||
private static final Graph.Edge[] GRAPH = {
|
||||
// Distance from node "a" to node "b" is 7.
|
||||
// In the current Graph there is no way to move the other way (e,g, from "b" to "a"),
|
||||
// a new edge would be needed for that
|
||||
new Graph.Edge("a", "b", 7),
|
||||
new Graph.Edge("a", "c", 9),
|
||||
new Graph.Edge("a", "f", 14),
|
||||
new Graph.Edge("b", "c", 10),
|
||||
new Graph.Edge("b", "d", 15),
|
||||
new Graph.Edge("c", "d", 11),
|
||||
new Graph.Edge("c", "f", 2),
|
||||
new Graph.Edge("d", "e", 6),
|
||||
new Graph.Edge("e", "f", 9),
|
||||
};
|
||||
private static final String START = "a";
|
||||
private static final String END = "e";
|
||||
|
||||
/**
|
||||
* main function
|
||||
* Will run the code with "GRAPH" that was defined above.
|
||||
*/
|
||||
public static void main(String[] args) {
|
||||
Graph g = new Graph(GRAPH);
|
||||
g.dijkstra(START);
|
||||
g.printPath(END);
|
||||
//g.printAllPaths();
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
class Graph {
|
||||
private final Map<String, Vertex> graph; // mapping of vertex names to Vertex objects, built from a set of Edges
|
||||
|
||||
/** One edge of the graph (only used by Graph constructor) */
|
||||
public static class Edge {
|
||||
public final String v1, v2;
|
||||
public final int dist;
|
||||
public Edge(String v1, String v2, int dist) {
|
||||
this.v1 = v1;
|
||||
this.v2 = v2;
|
||||
this.dist = dist;
|
||||
}
|
||||
}
|
||||
|
||||
/** One vertex of the graph, complete with mappings to neighbouring vertices */
|
||||
public static class Vertex implements Comparable<Vertex> {
|
||||
public final String name;
|
||||
public int dist = Integer.MAX_VALUE; // MAX_VALUE assumed to be infinity
|
||||
public Vertex previous = null;
|
||||
public final Map<Vertex, Integer> neighbours = new HashMap<>();
|
||||
|
||||
public Vertex(String name) {
|
||||
this.name = name;
|
||||
}
|
||||
|
||||
private void printPath() {
|
||||
if (this == this.previous) {
|
||||
System.out.printf("%s", this.name);
|
||||
}
|
||||
else if (this.previous == null) {
|
||||
System.out.printf("%s(unreached)", this.name);
|
||||
}
|
||||
else {
|
||||
this.previous.printPath();
|
||||
System.out.printf(" -> %s(%d)", this.name, this.dist);
|
||||
}
|
||||
}
|
||||
|
||||
public int compareTo(Vertex other) {
|
||||
if (dist == other.dist)
|
||||
return name.compareTo(other.name);
|
||||
|
||||
return Integer.compare(dist, other.dist);
|
||||
}
|
||||
|
||||
@Override public String toString() {
|
||||
return "(" + name + ", " + dist + ")";
|
||||
}
|
||||
}
|
||||
|
||||
/** Builds a graph from a set of edges */
|
||||
public Graph(Edge[] edges) {
|
||||
graph = new HashMap<>(edges.length);
|
||||
|
||||
//one pass to find all vertices
|
||||
for (Edge e : edges) {
|
||||
if (!graph.containsKey(e.v1)) graph.put(e.v1, new Vertex(e.v1));
|
||||
if (!graph.containsKey(e.v2)) graph.put(e.v2, new Vertex(e.v2));
|
||||
}
|
||||
|
||||
//another pass to set neighbouring vertices
|
||||
for (Edge e : edges) {
|
||||
graph.get(e.v1).neighbours.put(graph.get(e.v2), e.dist);
|
||||
//graph.get(e.v2).neighbours.put(graph.get(e.v1), e.dist); // also do this for an undirected graph
|
||||
}
|
||||
}
|
||||
|
||||
/** Runs dijkstra using a specified source vertex */
|
||||
public void dijkstra(String startName) {
|
||||
if (!graph.containsKey(startName)) {
|
||||
System.err.printf("Graph doesn't contain start vertex \"%s\"\n", startName);
|
||||
return;
|
||||
}
|
||||
final Vertex source = graph.get(startName);
|
||||
NavigableSet<Vertex> q = new TreeSet<>();
|
||||
|
||||
// set-up vertices
|
||||
for (Vertex v : graph.values()) {
|
||||
v.previous = v == source ? source : null;
|
||||
v.dist = v == source ? 0 : Integer.MAX_VALUE;
|
||||
q.add(v);
|
||||
}
|
||||
|
||||
dijkstra(q);
|
||||
}
|
||||
|
||||
/** Implementation of dijkstra's algorithm using a binary heap. */
|
||||
private void dijkstra(final NavigableSet<Vertex> q) {
|
||||
Vertex u, v;
|
||||
while (!q.isEmpty()) {
|
||||
|
||||
u = q.pollFirst(); // vertex with shortest distance (first iteration will return source)
|
||||
if (u.dist == Integer.MAX_VALUE) break; // we can ignore u (and any other remaining vertices) since they are unreachable
|
||||
|
||||
//look at distances to each neighbour
|
||||
for (Map.Entry<Vertex, Integer> a : u.neighbours.entrySet()) {
|
||||
v = a.getKey(); //the neighbour in this iteration
|
||||
|
||||
final int alternateDist = u.dist + a.getValue();
|
||||
if (alternateDist < v.dist) { // shorter path to neighbour found
|
||||
q.remove(v);
|
||||
v.dist = alternateDist;
|
||||
v.previous = u;
|
||||
q.add(v);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/** Prints a path from the source to the specified vertex */
|
||||
public void printPath(String endName) {
|
||||
if (!graph.containsKey(endName)) {
|
||||
System.err.printf("Graph doesn't contain end vertex \"%s\"\n", endName);
|
||||
return;
|
||||
}
|
||||
|
||||
graph.get(endName).printPath();
|
||||
System.out.println();
|
||||
}
|
||||
/** Prints the path from the source to every vertex (output order is not guaranteed) */
|
||||
public void printAllPaths() {
|
||||
for (Vertex v : graph.values()) {
|
||||
v.printPath();
|
||||
System.out.println();
|
||||
}
|
||||
}
|
||||
}
|
||||
// mapping of vertex names to Vertex objects, built from a set of Edges
|
||||
private final Map<String, Vertex> graph;
|
||||
|
||||
/** One edge of the graph (only used by Graph constructor) */
|
||||
public static class Edge {
|
||||
public final String v1, v2;
|
||||
public final int dist;
|
||||
|
||||
public Edge(String v1, String v2, int dist) {
|
||||
this.v1 = v1;
|
||||
this.v2 = v2;
|
||||
this.dist = dist;
|
||||
}
|
||||
}
|
||||
|
||||
/** One vertex of the graph, complete with mappings to neighbouring vertices */
|
||||
public static class Vertex implements Comparable<Vertex> {
|
||||
public final String name;
|
||||
// MAX_VALUE assumed to be infinity
|
||||
public int dist = Integer.MAX_VALUE;
|
||||
public Vertex previous = null;
|
||||
public final Map<Vertex, Integer> neighbours = new HashMap<>();
|
||||
|
||||
public Vertex(String name) {
|
||||
this.name = name;
|
||||
}
|
||||
|
||||
private void printPath() {
|
||||
if (this == this.previous) {
|
||||
System.out.printf("%s", this.name);
|
||||
} else if (this.previous == null) {
|
||||
System.out.printf("%s(unreached)", this.name);
|
||||
} else {
|
||||
this.previous.printPath();
|
||||
System.out.printf(" -> %s(%d)", this.name, this.dist);
|
||||
}
|
||||
}
|
||||
|
||||
public int compareTo(Vertex other) {
|
||||
if (dist == other.dist)
|
||||
return name.compareTo(other.name);
|
||||
|
||||
return Integer.compare(dist, other.dist);
|
||||
}
|
||||
|
||||
@Override
|
||||
public String toString() {
|
||||
return "(" + name + ", " + dist + ")";
|
||||
}
|
||||
}
|
||||
|
||||
/** Builds a graph from a set of edges */
|
||||
public Graph(Edge[] edges) {
|
||||
graph = new HashMap<>(edges.length);
|
||||
|
||||
// one pass to find all vertices
|
||||
for (Edge e : edges) {
|
||||
if (!graph.containsKey(e.v1)) graph.put(e.v1, new Vertex(e.v1));
|
||||
if (!graph.containsKey(e.v2)) graph.put(e.v2, new Vertex(e.v2));
|
||||
}
|
||||
|
||||
// another pass to set neighbouring vertices
|
||||
for (Edge e : edges) {
|
||||
graph.get(e.v1).neighbours.put(graph.get(e.v2), e.dist);
|
||||
// graph.get(e.v2).neighbours.put(graph.get(e.v1), e.dist); // also do this for an undirected graph
|
||||
}
|
||||
}
|
||||
|
||||
/** Runs dijkstra using a specified source vertex */
|
||||
public void dijkstra(String startName) {
|
||||
if (!graph.containsKey(startName)) {
|
||||
System.err.printf("Graph doesn't contain start vertex \"%s\"\n", startName);
|
||||
return;
|
||||
}
|
||||
final Vertex source = graph.get(startName);
|
||||
NavigableSet<Vertex> q = new TreeSet<>();
|
||||
|
||||
// set-up vertices
|
||||
for (Vertex v : graph.values()) {
|
||||
v.previous = v == source ? source : null;
|
||||
v.dist = v == source ? 0 : Integer.MAX_VALUE;
|
||||
q.add(v);
|
||||
}
|
||||
|
||||
dijkstra(q);
|
||||
}
|
||||
|
||||
/** Implementation of dijkstra's algorithm using a binary heap. */
|
||||
private void dijkstra(final NavigableSet<Vertex> q) {
|
||||
Vertex u, v;
|
||||
while (!q.isEmpty()) {
|
||||
// vertex with shortest distance (first iteration will return source)
|
||||
u = q.pollFirst();
|
||||
if (u.dist == Integer.MAX_VALUE)
|
||||
break; // we can ignore u (and any other remaining vertices) since they are unreachable
|
||||
|
||||
// look at distances to each neighbour
|
||||
for (Map.Entry<Vertex, Integer> a : u.neighbours.entrySet()) {
|
||||
v = a.getKey(); // the neighbour in this iteration
|
||||
|
||||
final int alternateDist = u.dist + a.getValue();
|
||||
if (alternateDist < v.dist) { // shorter path to neighbour found
|
||||
q.remove(v);
|
||||
v.dist = alternateDist;
|
||||
v.previous = u;
|
||||
q.add(v);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/** Prints a path from the source to the specified vertex */
|
||||
public void printPath(String endName) {
|
||||
if (!graph.containsKey(endName)) {
|
||||
System.err.printf("Graph doesn't contain end vertex \"%s\"\n", endName);
|
||||
return;
|
||||
}
|
||||
|
||||
graph.get(endName).printPath();
|
||||
System.out.println();
|
||||
}
|
||||
|
||||
/** Prints the path from the source to every vertex (output order is not guaranteed) */
|
||||
public void printAllPaths() {
|
||||
for (Vertex v : graph.values()) {
|
||||
v.printPath();
|
||||
System.out.println();
|
||||
}
|
||||
}
|
||||
}
|
Loading…
Reference in New Issue
Block a user