Enhancing DisjointSetUnion data structure (#4366)

* Enhancing DisjointSetUnion data structure

* Linter resolved

* Linter resolved

* Linter resolved

* Linter resolved

* Added next line

* added next Line

* Resolve review comments

---------

Co-authored-by: Bama Charan Chhandogi <b.c.chhandogi@gmail.com>
This commit is contained in:
Manan Solanki 2023-09-10 22:30:35 +05:30 committed by GitHub
parent c54b8cddf3
commit 94621fb63e
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
5 changed files with 129 additions and 46 deletions

View File

@ -1,33 +0,0 @@
package com.thealgorithms.datastructures.disjointsets;
public class DisjointSets<T> {
public Node<T> MakeSet(T x) {
return new Node<T>(x);
}
public Node<T> FindSet(Node<T> node) {
if (node != node.parent) {
node.parent = FindSet(node.parent);
}
return node.parent;
}
public void UnionSet(Node<T> x, Node<T> y) {
Node<T> nx = FindSet(x);
Node<T> ny = FindSet(y);
if (nx == ny) {
return;
}
if (nx.rank > ny.rank) {
ny.parent = nx;
} else if (ny.rank > nx.rank) {
nx.parent = ny;
} else {
nx.parent = ny;
ny.rank++;
}
}
}

View File

@ -1,13 +0,0 @@
package com.thealgorithms.datastructures.disjointsets;
public class Node<T> {
public int rank;
public Node<T> parent;
public T data;
public Node(T data) {
this.data = data;
parent = this;
}
}

View File

@ -0,0 +1,53 @@
package com.thealgorithms.datastructures.disjointsetunion;
/**
* Disjoint Set Union or DSU is useful for solving problems related to connected components,
* cycle detection in graphs, and maintaining relationships in disjoint sets of data.
* It is commonly employed in graph algorithms and problems.
*
* @see <a href="https://en.wikipedia.org/wiki/Disjoint-set_data_structure">Disjoint Set Union</a>
*/
public class DisjointSetUnion<T> {
/**
* Creates a new node of DSU with parent initialised as same node
*/
public Node<T> makeSet(final T x) {
return new Node<T>(x);
}
/**
* Finds and returns the representative (root) element of the set to which a given element belongs.
* This operation uses path compression to optimize future findSet operations.
*/
public Node<T> findSet(Node<T> node) {
while (node != node.parent) {
node = node.parent;
}
return node;
}
/**
* Unions two sets by merging their representative elements. The merge is performed based on the rank of each set
* to ensure efficient merging and path compression to optimize future findSet operations.
*/
public void unionSets(final Node<T> x, final Node<T> y) {
Node<T> nx = findSet(x);
Node<T> ny = findSet(y);
if (nx == ny) {
return; // Both elements already belong to the same set.
}
// Merging happens based on rank of node, this is done to avoid long chaining of nodes and reduce time
// to find root of the component. Idea is to attach small components in big, instead of other way around.
if (nx.rank > ny.rank) {
ny.parent = nx;
} else if (ny.rank > nx.rank) {
nx.parent = ny;
} else {
// Both sets have the same rank; choose one as the parent and increment the rank.
ny.parent = nx;
nx.rank++;
}
}
}

View File

@ -0,0 +1,25 @@
package com.thealgorithms.datastructures.disjointsetunion;
public class Node<T> {
/**
* The rank of the node, used for optimizing union operations.
*/
public int rank;
/**
* Reference to the parent node in the set.
* Initially, a node is its own parent (represents a singleton set).
*/
public Node<T> parent;
/**
* The data element associated with the node.
*/
public T data;
public Node(final T data) {
this.data = data;
parent = this; // Initially, a node is its own parent.
}
}

View File

@ -0,0 +1,51 @@
package com.thealgorithms.datastructures.disjointsetunion;
import static org.junit.jupiter.api.Assertions.assertNotNull;
import org.junit.jupiter.api.Assertions;
import org.junit.jupiter.api.Test;
public class DisjointSetUnionTest {
@Test
public void testMakeSet() {
DisjointSetUnion<Integer> dsu = new DisjointSetUnion<>();
Node<Integer> node = dsu.makeSet(1);
assertNotNull(node);
Assertions.assertEquals(node, node.parent);
}
@Test
public void testUnionFindSet() {
DisjointSetUnion<Integer> dsu = new DisjointSetUnion<>();
Node<Integer> node1 = dsu.makeSet(1);
Node<Integer> node2 = dsu.makeSet(2);
Node<Integer> node3 = dsu.makeSet(3);
Node<Integer> node4 = dsu.makeSet(4);
dsu.unionSets(node1, node2);
dsu.unionSets(node3, node2);
dsu.unionSets(node3, node4);
dsu.unionSets(node1, node3);
Node<Integer> root1 = dsu.findSet(node1);
Node<Integer> root2 = dsu.findSet(node2);
Node<Integer> root3 = dsu.findSet(node3);
Node<Integer> root4 = dsu.findSet(node4);
Assertions.assertEquals(node1, node1.parent);
Assertions.assertEquals(node1, node2.parent);
Assertions.assertEquals(node1, node3.parent);
Assertions.assertEquals(node1, node4.parent);
Assertions.assertEquals(node1, root1);
Assertions.assertEquals(node1, root2);
Assertions.assertEquals(node1, root3);
Assertions.assertEquals(node1, root4);
Assertions.assertEquals(1, node1.rank);
Assertions.assertEquals(0, node2.rank);
Assertions.assertEquals(0, node3.rank);
Assertions.assertEquals(0, node4.rank);
}
}