refactor: Dijkstra algorithm
(#5329)
This commit is contained in:
parent
e32cab3189
commit
98bee26d51
@ -1,86 +0,0 @@
|
||||
/*
|
||||
Refer https://www.geeksforgeeks.org/dijkstras-shortest-path-algorithm-greedy-algo-7/
|
||||
for better understanding
|
||||
*/
|
||||
package com.thealgorithms.datastructures.graphs;
|
||||
|
||||
class Dijkstras {
|
||||
|
||||
int k = 9;
|
||||
|
||||
int minDist(int[] dist, Boolean[] set) {
|
||||
int min = Integer.MAX_VALUE;
|
||||
int minIndex = -1;
|
||||
|
||||
for (int r = 0; r < k; r++) {
|
||||
if (!set[r] && dist[r] <= min) {
|
||||
min = dist[r];
|
||||
minIndex = r;
|
||||
}
|
||||
}
|
||||
|
||||
return minIndex;
|
||||
}
|
||||
|
||||
void print(int[] dist) {
|
||||
System.out.println("Vertex \t\t Distance");
|
||||
for (int i = 0; i < k; i++) {
|
||||
System.out.println(i + " \t " + dist[i]);
|
||||
}
|
||||
}
|
||||
|
||||
void dijkstra(int[][] graph, int src) {
|
||||
int[] dist = new int[k];
|
||||
Boolean[] set = new Boolean[k];
|
||||
|
||||
for (int i = 0; i < k; i++) {
|
||||
dist[i] = Integer.MAX_VALUE;
|
||||
set[i] = Boolean.FALSE;
|
||||
}
|
||||
|
||||
dist[src] = 0;
|
||||
|
||||
for (int c = 0; c < k - 1; c++) {
|
||||
int u = minDist(dist, set);
|
||||
|
||||
set[u] = Boolean.TRUE;
|
||||
|
||||
for (int v = 0; v < k; v++) {
|
||||
if (!set[v] && graph[u][v] != 0 && dist[u] != Integer.MAX_VALUE && dist[u] + graph[u][v] < dist[v]) {
|
||||
dist[v] = dist[u] + graph[u][v];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
print(dist);
|
||||
}
|
||||
|
||||
public static void main(String[] args) {
|
||||
int[][] graph = new int[][] {
|
||||
{0, 4, 0, 0, 0, 0, 0, 8, 0},
|
||||
{4, 0, 8, 0, 0, 0, 0, 11, 0},
|
||||
{0, 8, 0, 7, 0, 4, 0, 0, 2},
|
||||
{0, 0, 7, 0, 9, 14, 0, 0, 0},
|
||||
{0, 0, 0, 9, 0, 10, 0, 0, 0},
|
||||
{0, 0, 4, 14, 10, 0, 2, 0, 0},
|
||||
{0, 0, 0, 0, 0, 2, 0, 1, 6},
|
||||
{8, 11, 0, 0, 0, 0, 1, 0, 7},
|
||||
{0, 0, 2, 0, 0, 0, 6, 7, 0},
|
||||
};
|
||||
Dijkstras t = new Dijkstras();
|
||||
t.dijkstra(graph, 0);
|
||||
} // main
|
||||
} // djikstras
|
||||
/*
|
||||
OUTPUT :
|
||||
Vertex Distance
|
||||
0 0
|
||||
1 4
|
||||
2 12
|
||||
3 19
|
||||
4 21
|
||||
5 11
|
||||
6 9
|
||||
7 8
|
||||
8 14
|
||||
*/
|
@ -0,0 +1,91 @@
|
||||
package com.thealgorithms.datastructures.graphs;
|
||||
|
||||
import java.util.Arrays;
|
||||
|
||||
/**
|
||||
* Dijkstra's algorithm for finding the shortest path from a single source vertex to all other vertices in a graph.
|
||||
*/
|
||||
public class DijkstraAlgorithm {
|
||||
|
||||
private final int vertexCount;
|
||||
|
||||
/**
|
||||
* Constructs a Dijkstra object with the given number of vertices.
|
||||
*
|
||||
* @param vertexCount The number of vertices in the graph.
|
||||
*/
|
||||
public DijkstraAlgorithm(int vertexCount) {
|
||||
this.vertexCount = vertexCount;
|
||||
}
|
||||
|
||||
/**
|
||||
* Executes Dijkstra's algorithm on the provided graph to find the shortest paths from the source vertex to all other vertices.
|
||||
*
|
||||
* The graph is represented as an adjacency matrix where {@code graph[i][j]} represents the weight of the edge from vertex {@code i}
|
||||
* to vertex {@code j}. A value of 0 indicates no edge exists between the vertices.
|
||||
*
|
||||
* @param graph The graph represented as an adjacency matrix.
|
||||
* @param source The source vertex.
|
||||
* @return An array where the value at each index {@code i} represents the shortest distance from the source vertex to vertex {@code i}.
|
||||
* @throws IllegalArgumentException if the source vertex is out of range.
|
||||
*/
|
||||
public int[] run(int[][] graph, int source) {
|
||||
if (source < 0 || source >= vertexCount) {
|
||||
throw new IllegalArgumentException("Incorrect source");
|
||||
}
|
||||
|
||||
int[] distances = new int[vertexCount];
|
||||
boolean[] processed = new boolean[vertexCount];
|
||||
|
||||
Arrays.fill(distances, Integer.MAX_VALUE);
|
||||
Arrays.fill(processed, false);
|
||||
distances[source] = 0;
|
||||
|
||||
for (int count = 0; count < vertexCount - 1; count++) {
|
||||
int u = getMinDistanceVertex(distances, processed);
|
||||
processed[u] = true;
|
||||
|
||||
for (int v = 0; v < vertexCount; v++) {
|
||||
if (!processed[v] && graph[u][v] != 0 && distances[u] != Integer.MAX_VALUE && distances[u] + graph[u][v] < distances[v]) {
|
||||
distances[v] = distances[u] + graph[u][v];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
printDistances(distances);
|
||||
return distances;
|
||||
}
|
||||
|
||||
/**
|
||||
* Finds the vertex with the minimum distance value from the set of vertices that have not yet been processed.
|
||||
*
|
||||
* @param distances The array of current shortest distances from the source vertex.
|
||||
* @param processed The array indicating whether each vertex has been processed.
|
||||
* @return The index of the vertex with the minimum distance value.
|
||||
*/
|
||||
private int getMinDistanceVertex(int[] distances, boolean[] processed) {
|
||||
int min = Integer.MAX_VALUE;
|
||||
int minIndex = -1;
|
||||
|
||||
for (int v = 0; v < vertexCount; v++) {
|
||||
if (!processed[v] && distances[v] <= min) {
|
||||
min = distances[v];
|
||||
minIndex = v;
|
||||
}
|
||||
}
|
||||
|
||||
return minIndex;
|
||||
}
|
||||
|
||||
/**
|
||||
* Prints the shortest distances from the source vertex to all other vertices.
|
||||
*
|
||||
* @param distances The array of shortest distances.
|
||||
*/
|
||||
private void printDistances(int[] distances) {
|
||||
System.out.println("Vertex \t Distance");
|
||||
for (int i = 0; i < vertexCount; i++) {
|
||||
System.out.println(i + " \t " + distances[i]);
|
||||
}
|
||||
}
|
||||
}
|
@ -0,0 +1,64 @@
|
||||
package com.thealgorithms.datastructures.graphs;
|
||||
|
||||
import static org.junit.jupiter.api.Assertions.assertArrayEquals;
|
||||
import static org.junit.jupiter.api.Assertions.assertThrows;
|
||||
|
||||
import org.junit.jupiter.api.BeforeEach;
|
||||
import org.junit.jupiter.api.Test;
|
||||
|
||||
public class DijkstraAlgorithmTest {
|
||||
|
||||
private DijkstraAlgorithm dijkstraAlgorithm;
|
||||
private int[][] graph;
|
||||
|
||||
@BeforeEach
|
||||
void setUp() {
|
||||
graph = new int[][] {
|
||||
{0, 4, 0, 0, 0, 0, 0, 8, 0},
|
||||
{4, 0, 8, 0, 0, 0, 0, 11, 0},
|
||||
{0, 8, 0, 7, 0, 4, 0, 0, 2},
|
||||
{0, 0, 7, 0, 9, 14, 0, 0, 0},
|
||||
{0, 0, 0, 9, 0, 10, 0, 0, 0},
|
||||
{0, 0, 4, 14, 10, 0, 2, 0, 0},
|
||||
{0, 0, 0, 0, 0, 2, 0, 1, 6},
|
||||
{8, 11, 0, 0, 0, 0, 1, 0, 7},
|
||||
{0, 0, 2, 0, 0, 0, 6, 7, 0},
|
||||
};
|
||||
|
||||
dijkstraAlgorithm = new DijkstraAlgorithm(graph.length);
|
||||
}
|
||||
|
||||
@Test
|
||||
void testRunAlgorithm() {
|
||||
int[] expectedDistances = {0, 4, 12, 19, 21, 11, 9, 8, 14};
|
||||
assertArrayEquals(expectedDistances, dijkstraAlgorithm.run(graph, 0));
|
||||
}
|
||||
|
||||
@Test
|
||||
void testGraphWithDisconnectedNodes() {
|
||||
int[][] disconnectedGraph = {
|
||||
{0, 3, 0, 0}, {3, 0, 1, 0}, {0, 1, 0, 0}, {0, 0, 0, 0} // Node 3 is disconnected
|
||||
};
|
||||
|
||||
DijkstraAlgorithm dijkstraDisconnected = new DijkstraAlgorithm(disconnectedGraph.length);
|
||||
|
||||
// Testing from vertex 0
|
||||
int[] expectedDistances = {0, 3, 4, Integer.MAX_VALUE}; // Node 3 is unreachable
|
||||
assertArrayEquals(expectedDistances, dijkstraDisconnected.run(disconnectedGraph, 0));
|
||||
}
|
||||
|
||||
@Test
|
||||
void testSingleVertexGraph() {
|
||||
int[][] singleVertexGraph = {{0}};
|
||||
DijkstraAlgorithm dijkstraSingleVertex = new DijkstraAlgorithm(1);
|
||||
|
||||
int[] expectedDistances = {0}; // The only vertex's distance to itself is 0
|
||||
assertArrayEquals(expectedDistances, dijkstraSingleVertex.run(singleVertexGraph, 0));
|
||||
}
|
||||
|
||||
@Test
|
||||
void testInvalidSourceVertex() {
|
||||
assertThrows(IllegalArgumentException.class, () -> dijkstraAlgorithm.run(graph, -1));
|
||||
assertThrows(IllegalArgumentException.class, () -> dijkstraAlgorithm.run(graph, graph.length));
|
||||
}
|
||||
}
|
Loading…
Reference in New Issue
Block a user