Optimize MinimumPathSum (#4400)

This commit is contained in:
Manan Solanki 2023-09-25 19:55:16 +05:30 committed by GitHub
parent d6024f9cd4
commit 9d8a0f36cf
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 35 additions and 35 deletions

View File

@ -12,9 +12,8 @@ Given the following grid with length m and width n:
(m)
Find the path where its sum is the smallest.
All numbers given are positive.
The Time Complexity of your algorithm should be smaller than or equal to O(mn).
The Space Complexity of your algorithm should be smaller than or equal to O(mn).
The Space Complexity of your algorithm should be smaller than or equal to O(n).
You can only move from the top left corner to the down right corner.
You can only move one step down or right.
@ -25,46 +24,41 @@ EXPLANATIONS: 1 + 3 + 1 + 1 + 1 = 7
For more information see https://www.geeksforgeeks.org/maximum-path-sum-matrix/
*/
public class MinimumPathSum {
public final class MinimumPathSum {
public void testRegular() {
int[][] grid = {{1, 3, 1}, {1, 5, 1}, {4, 2, 1}};
System.out.println(minimumPathSum(grid));
private MinimumPathSum() {
}
public void testLessColumns() {
int[][] grid = {{1, 2}, {5, 6}, {1, 1}};
System.out.println(minimumPathSum(grid));
}
public static int minimumPathSum(final int[][] grid) {
int numRows = grid.length;
int numCols = grid[0].length;
public void testLessRows() {
int[][] grid = {{2, 3, 3}, {7, 2, 1}};
System.out.println(minimumPathSum(grid));
}
public void testOneRowOneColumn() {
int[][] grid = {{2}};
System.out.println(minimumPathSum(grid));
}
public static int minimumPathSum(int[][] grid) {
int m = grid.length, n = grid[0].length;
if (n == 0) {
if (numCols == 0) {
return 0;
}
int[][] dp = new int[m][n];
dp[0][0] = grid[0][0];
for (int i = 0; i < n - 1; i++) {
dp[0][i + 1] = dp[0][i] + grid[0][i + 1];
int[] dp = new int[numCols];
// Initialize the first element of the dp array
dp[0] = grid[0][0];
// Calculate the minimum path sums for the first row
for (int col = 1; col < numCols; col++) {
dp[col] = dp[col - 1] + grid[0][col];
}
for (int i = 0; i < m - 1; i++) {
dp[i + 1][0] = dp[i][0] + grid[i + 1][0];
}
for (int i = 1; i < m; i++) {
for (int j = 1; j < n; j++) {
dp[i][j] = Math.min(dp[i - 1][j], dp[i][j - 1]) + grid[i][j];
// Calculate the minimum path sums for the remaining rows
for (int row = 1; row < numRows; row++) {
// Update the minimum path sum for the first column
dp[0] += grid[row][0];
for (int col = 1; col < numCols; col++) {
// Choose the minimum path sum from the left or above
dp[col] = Math.min(dp[col - 1], dp[col]) + grid[row][col];
}
}
return dp[m - 1][n - 1];
// Return the minimum path sum for the last cell in the grid
return dp[numCols - 1];
}
}

View File

@ -1,6 +1,6 @@
package com.thealgorithms.dynamicprogramming;
import static org.junit.jupiter.api.Assertions.*;
import static org.junit.jupiter.api.Assertions.assertEquals;
import org.junit.jupiter.api.Test;
@ -41,4 +41,10 @@ public class MinimumPathSumTest {
int[][] grid = {{1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12}};
assertEquals(30, MinimumPathSum.minimumPathSum(grid));
}
@Test
public void testMinimumPathSumWithNegativeNumberGrid() {
int[][] grid = {{1, 3, 1}, {3, 4, 1}, {4, -3, 1}};
assertEquals(6, MinimumPathSum.minimumPathSum(grid));
}
}