Add MatrixRank
(#4571)
* feat: adding matrix rank algorithm * fix: formatting * fix: adding comments, refactor and handling edge cases * refactor: minor refactor * enhancement: check matrix validity * refactor: minor refactor and fixes * Update src/main/java/com/thealgorithms/maths/MatrixRank.java * feat: add unit test to check if input matrix is not modified while calculating the rank --------- Co-authored-by: Anup Omkar <anup_omkar@intuit.com> Co-authored-by: Piotr Idzik <65706193+vil02@users.noreply.github.com> Co-authored-by: Andrii Siriak <siryaka@gmail.com>
This commit is contained in:
parent
a4711d61d8
commit
9dde8a7808
164
src/main/java/com/thealgorithms/maths/MatrixRank.java
Normal file
164
src/main/java/com/thealgorithms/maths/MatrixRank.java
Normal file
@ -0,0 +1,164 @@
|
||||
package com.thealgorithms.maths;
|
||||
|
||||
/**
|
||||
* This class provides a method to compute the rank of a matrix.
|
||||
* In linear algebra, the rank of a matrix is the maximum number of linearly independent rows or columns in the matrix.
|
||||
* For example, consider the following 3x3 matrix:
|
||||
* 1 2 3
|
||||
* 2 4 6
|
||||
* 3 6 9
|
||||
* Despite having 3 rows and 3 columns, this matrix only has a rank of 1 because all rows (and columns) are multiples of each other.
|
||||
* It's a fundamental concept that gives key insights into the structure of the matrix.
|
||||
* It's important to note that the rank is not only defined for square matrices but for any m x n matrix.
|
||||
*
|
||||
* @author Anup Omkar
|
||||
*/
|
||||
public final class MatrixRank {
|
||||
|
||||
private MatrixRank() {
|
||||
}
|
||||
|
||||
private static final double EPSILON = 1e-10;
|
||||
|
||||
/**
|
||||
* @brief Computes the rank of the input matrix
|
||||
*
|
||||
* @param matrix The input matrix
|
||||
* @return The rank of the input matrix
|
||||
*/
|
||||
public static int computeRank(double[][] matrix) {
|
||||
validateInputMatrix(matrix);
|
||||
|
||||
int numRows = matrix.length;
|
||||
int numColumns = matrix[0].length;
|
||||
int rank = 0;
|
||||
|
||||
boolean[] rowMarked = new boolean[numRows];
|
||||
|
||||
double[][] matrixCopy = deepCopy(matrix);
|
||||
|
||||
for (int colIndex = 0; colIndex < numColumns; ++colIndex) {
|
||||
int pivotRow = findPivotRow(matrixCopy, rowMarked, colIndex);
|
||||
if (pivotRow != numRows) {
|
||||
++rank;
|
||||
rowMarked[pivotRow] = true;
|
||||
normalizePivotRow(matrixCopy, pivotRow, colIndex);
|
||||
eliminateRows(matrixCopy, pivotRow, colIndex);
|
||||
}
|
||||
}
|
||||
return rank;
|
||||
}
|
||||
|
||||
private static boolean isZero(double value) {
|
||||
return Math.abs(value) < EPSILON;
|
||||
}
|
||||
|
||||
private static double[][] deepCopy(double[][] matrix) {
|
||||
int numRows = matrix.length;
|
||||
int numColumns = matrix[0].length;
|
||||
double[][] matrixCopy = new double[numRows][numColumns];
|
||||
for (int rowIndex = 0; rowIndex < numRows; ++rowIndex) {
|
||||
System.arraycopy(matrix[rowIndex], 0, matrixCopy[rowIndex], 0, numColumns);
|
||||
}
|
||||
return matrixCopy;
|
||||
}
|
||||
|
||||
private static void validateInputMatrix(double[][] matrix) {
|
||||
if (matrix == null) {
|
||||
throw new IllegalArgumentException("The input matrix cannot be null");
|
||||
}
|
||||
if (matrix.length == 0) {
|
||||
throw new IllegalArgumentException("The input matrix cannot be empty");
|
||||
}
|
||||
if (!hasValidRows(matrix)) {
|
||||
throw new IllegalArgumentException("The input matrix cannot have null or empty rows");
|
||||
}
|
||||
if (isJaggedMatrix(matrix)) {
|
||||
throw new IllegalArgumentException("The input matrix cannot be jagged");
|
||||
}
|
||||
}
|
||||
|
||||
private static boolean hasValidRows(double[][] matrix) {
|
||||
for (double[] row : matrix) {
|
||||
if (row == null || row.length == 0) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Checks if the input matrix is a jagged matrix.
|
||||
* Jagged matrix is a matrix where the number of columns in each row is not the same.
|
||||
*
|
||||
* @param matrix The input matrix
|
||||
* @return True if the input matrix is a jagged matrix, false otherwise
|
||||
*/
|
||||
private static boolean isJaggedMatrix(double[][] matrix) {
|
||||
int numColumns = matrix[0].length;
|
||||
for (double[] row : matrix) {
|
||||
if (row.length != numColumns) {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief The pivot row is the row in the matrix that is used to eliminate other rows and reduce the matrix to its row echelon form.
|
||||
* The pivot row is selected as the first row (from top to bottom) where the value in the current column (the pivot column) is not zero.
|
||||
* This row is then used to "eliminate" other rows, by subtracting multiples of the pivot row from them, so that all other entries in the pivot column become zero.
|
||||
* This process is repeated for each column, each time selecting a new pivot row, until the matrix is in row echelon form.
|
||||
* The number of pivot rows (rows with a leading entry, or pivot) then gives the rank of the matrix.
|
||||
*
|
||||
* @param matrix The input matrix
|
||||
* @param rowMarked An array indicating which rows have been marked
|
||||
* @param colIndex The column index
|
||||
* @return The pivot row index, or the number of rows if no suitable pivot row was found
|
||||
*/
|
||||
private static int findPivotRow(double[][] matrix, boolean[] rowMarked, int colIndex) {
|
||||
int numRows = matrix.length;
|
||||
for (int pivotRow = 0; pivotRow < numRows; ++pivotRow) {
|
||||
if (!rowMarked[pivotRow] && !isZero(matrix[pivotRow][colIndex])) {
|
||||
return pivotRow;
|
||||
}
|
||||
}
|
||||
return numRows;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief This method divides all values in the pivot row by the value in the given column.
|
||||
* This ensures that the pivot value itself will be 1, which simplifies further calculations.
|
||||
*
|
||||
* @param matrix The input matrix
|
||||
* @param pivotRow The pivot row index
|
||||
* @param colIndex The column index
|
||||
*/
|
||||
private static void normalizePivotRow(double[][] matrix, int pivotRow, int colIndex) {
|
||||
int numColumns = matrix[0].length;
|
||||
for (int nextCol = colIndex + 1; nextCol < numColumns; ++nextCol) {
|
||||
matrix[pivotRow][nextCol] /= matrix[pivotRow][colIndex];
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief This method subtracts multiples of the pivot row from all other rows,
|
||||
* so that all values in the given column of other rows will be zero.
|
||||
* This is a key step in reducing the matrix to row echelon form.
|
||||
*
|
||||
* @param matrix The input matrix
|
||||
* @param pivotRow The pivot row index
|
||||
* @param colIndex The column index
|
||||
*/
|
||||
private static void eliminateRows(double[][] matrix, int pivotRow, int colIndex) {
|
||||
int numRows = matrix.length;
|
||||
int numColumns = matrix[0].length;
|
||||
for (int otherRow = 0; otherRow < numRows; ++otherRow) {
|
||||
if (otherRow != pivotRow && !isZero(matrix[otherRow][colIndex])) {
|
||||
for (int col2 = colIndex + 1; col2 < numColumns; ++col2) {
|
||||
matrix[otherRow][col2] -= matrix[pivotRow][col2] * matrix[otherRow][colIndex];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
45
src/test/java/com/thealgorithms/maths/MatrixRankTest.java
Normal file
45
src/test/java/com/thealgorithms/maths/MatrixRankTest.java
Normal file
@ -0,0 +1,45 @@
|
||||
package com.thealgorithms.maths;
|
||||
|
||||
import static org.junit.jupiter.api.Assertions.assertEquals;
|
||||
import static org.junit.jupiter.api.Assertions.assertThrows;
|
||||
|
||||
import java.util.Arrays;
|
||||
import java.util.stream.Stream;
|
||||
import org.junit.jupiter.params.ParameterizedTest;
|
||||
import org.junit.jupiter.params.provider.Arguments;
|
||||
import org.junit.jupiter.params.provider.MethodSource;
|
||||
|
||||
class MatrixRankTest {
|
||||
|
||||
private static Stream<Arguments> validInputStream() {
|
||||
return Stream.of(Arguments.of(3, new double[][] {{1, 0, 0}, {0, 1, 0}, {0, 0, 1}}), Arguments.of(0, new double[][] {{0, 0, 0}, {0, 0, 0}, {0, 0, 0}}), Arguments.of(1, new double[][] {{1}}), Arguments.of(2, new double[][] {{1, 2}, {3, 4}}),
|
||||
Arguments.of(2, new double[][] {{3, -1, 2}, {-3, 1, 2}, {-6, 2, 4}}), Arguments.of(3, new double[][] {{2, 3, 0, 1}, {1, 0, 1, 2}, {-1, 1, 1, -2}, {1, 5, 3, -1}}), Arguments.of(1, new double[][] {{1, 2, 3}, {3, 6, 9}}),
|
||||
Arguments.of(2, new double[][] {{0.25, 0.5, 0.75, 2}, {1.5, 3, 4.5, 6}, {1, 2, 3, 4}}));
|
||||
}
|
||||
|
||||
private static Stream<Arguments> invalidInputStream() {
|
||||
return Stream.of(Arguments.of((Object) new double[][] {{1, 2}, {10}, {100, 200, 300}}), // jagged array
|
||||
Arguments.of((Object) new double[][] {}), // empty matrix
|
||||
Arguments.of((Object) new double[][] {{}, {}}), // empty row
|
||||
Arguments.of((Object) null), // null matrix
|
||||
Arguments.of((Object) new double[][] {{1, 2}, null}) // null row
|
||||
);
|
||||
}
|
||||
|
||||
@ParameterizedTest
|
||||
@MethodSource("validInputStream")
|
||||
void computeRankTests(int expectedRank, double[][] matrix) {
|
||||
int originalHashCode = Arrays.deepHashCode(matrix);
|
||||
int rank = MatrixRank.computeRank(matrix);
|
||||
int newHashCode = Arrays.deepHashCode(matrix);
|
||||
|
||||
assertEquals(expectedRank, rank);
|
||||
assertEquals(originalHashCode, newHashCode);
|
||||
}
|
||||
|
||||
@ParameterizedTest
|
||||
@MethodSource("invalidInputStream")
|
||||
void computeRankWithInvalidMatrix(double[][] matrix) {
|
||||
assertThrows(IllegalArgumentException.class, () -> MatrixRank.computeRank(matrix));
|
||||
}
|
||||
}
|
Loading…
Reference in New Issue
Block a user