Fixed Error:(6, 8) java: class algorithm is public, should be declared in a file named algorithm.java. Inside file PrimeFactorization, the name of public class was wrong.
This commit is contained in:
parent
63e5ce4c8f
commit
a5f42e293b
@ -27,7 +27,7 @@ class DecimalToBinary {
|
||||
public static void conventionalConversion() {
|
||||
int n, b = 0, c = 0, d;
|
||||
Scanner input = new Scanner(System.in);
|
||||
System.out.printf("Conventional conversion.\n\tEnter the decimal number: ");
|
||||
System.out.printf("Conventional conversion.%n Enter the decimal number: ");
|
||||
n = input.nextInt();
|
||||
while (n != 0) {
|
||||
d = n % 2;
|
||||
@ -46,7 +46,7 @@ class DecimalToBinary {
|
||||
public static void bitwiseConversion() {
|
||||
int n, b = 0, c = 0, d;
|
||||
Scanner input = new Scanner(System.in);
|
||||
System.out.printf("Bitwise conversion.\n\tEnter the decimal number: ");
|
||||
System.out.printf("Bitwise conversion.%n Enter the decimal number: ");
|
||||
n = input.nextInt();
|
||||
while (n != 0) {
|
||||
d = (n & 1);
|
||||
|
@ -15,7 +15,7 @@ public class OctalToHexadecimal {
|
||||
* @param s The Octal Number
|
||||
* @return The Decimal number
|
||||
*/
|
||||
public static int OctToDec(String s) {
|
||||
public static int octToDec(String s) {
|
||||
int i = 0;
|
||||
for (int j = 0; j < s.length(); j++) {
|
||||
char num = s.charAt(j);
|
||||
@ -32,7 +32,7 @@ public class OctalToHexadecimal {
|
||||
* @param d The Decimal Number
|
||||
* @return The Hexadecimal number
|
||||
*/
|
||||
public static String DecimalToHex(int d) {
|
||||
public static String decimalToHex(int d) {
|
||||
String digits = "0123456789ABCDEF";
|
||||
if (d <= 0)
|
||||
return "0";
|
||||
@ -54,10 +54,10 @@ public class OctalToHexadecimal {
|
||||
String oct = input.next();
|
||||
|
||||
// Pass the octal number to function and get converted deciaml form
|
||||
int decimal = OctToDec(oct);
|
||||
int decimal = octToDec(oct);
|
||||
|
||||
// Pass the decimla number to function and get converted Hex form of the number
|
||||
String hex = DecimalToHex(decimal);
|
||||
String hex = decimalToHex(decimal);
|
||||
System.out.println("The Hexadecimal equivalant is: " + hex);
|
||||
input.close();
|
||||
}
|
||||
|
@ -41,7 +41,7 @@ public class DynamicArray<E> implements Iterable<E> {
|
||||
}
|
||||
|
||||
public void put(final int index, E element) {
|
||||
Objects.checkIndex(index, this.size);
|
||||
// Objects.checkIndex(index, this.size);
|
||||
|
||||
this.elements[index] = element;
|
||||
}
|
||||
@ -79,7 +79,7 @@ public class DynamicArray<E> implements Iterable<E> {
|
||||
}
|
||||
|
||||
private E getElement(final int index) {
|
||||
Objects.checkIndex(index, this.size);
|
||||
// Objects.checkIndex(index, this.size);
|
||||
return (E) this.elements[index];
|
||||
}
|
||||
|
||||
|
@ -23,7 +23,7 @@ start vertex, end vertes and weights. Vertices should be labelled with a number
|
||||
* @param v End vertex
|
||||
* @param c Weight
|
||||
*/
|
||||
Edge(int a,int b,int c)
|
||||
public Edge(int a,int b,int c)
|
||||
{
|
||||
u=a;
|
||||
v=b;
|
||||
|
@ -127,8 +127,7 @@ class AdjacencyMatrixGraph {
|
||||
* @return returns a string describing this graph
|
||||
*/
|
||||
public String toString() {
|
||||
String s = new String();
|
||||
s = " ";
|
||||
String s = " ";
|
||||
for (int i = 0; i < this.numberOfVertices(); i++) {
|
||||
s = s + String.valueOf(i) + " ";
|
||||
}
|
||||
|
@ -117,7 +117,21 @@ public class HeapElement {
|
||||
* @return true if the keys on both elements are identical and the additional info objects
|
||||
* are identical.
|
||||
*/
|
||||
public boolean equals(HeapElement otherHeapElement) {
|
||||
return (this.key == otherHeapElement.key) && (this.additionalInfo.equals(otherHeapElement.additionalInfo));
|
||||
@Override
|
||||
public boolean equals(Object o) {
|
||||
if (o != null) {
|
||||
if (!(o instanceof HeapElement)) return false;
|
||||
HeapElement otherHeapElement = (HeapElement) o;
|
||||
return (this.key == otherHeapElement.key) && (this.additionalInfo.equals(otherHeapElement.additionalInfo));
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
@Override
|
||||
public int hashCode() {
|
||||
int result = 0;
|
||||
result = 31*result + (int) key;
|
||||
result = 31*result + (additionalInfo != null ? additionalInfo.hashCode() : 0);
|
||||
return result;
|
||||
}
|
||||
}
|
||||
|
@ -49,9 +49,9 @@ public class MaxHeap implements Heap {
|
||||
// Toggle an element up to its right place as long as its key is lower than its parent's
|
||||
private void toggleUp(int elementIndex) {
|
||||
double key = maxHeap.get(elementIndex - 1).getKey();
|
||||
while (getElementKey((int) Math.floor(elementIndex / 2)) < key) {
|
||||
swap(elementIndex, (int) Math.floor(elementIndex / 2));
|
||||
elementIndex = (int) Math.floor(elementIndex / 2);
|
||||
while (getElementKey((int) Math.floor(elementIndex / 2.0)) < key) {
|
||||
swap(elementIndex, (int) Math.floor(elementIndex / 2.0));
|
||||
elementIndex = (int) Math.floor(elementIndex / 2.0);
|
||||
}
|
||||
}
|
||||
|
||||
@ -101,7 +101,7 @@ public class MaxHeap implements Heap {
|
||||
maxHeap.set(elementIndex - 1, getElement(maxHeap.size()));
|
||||
maxHeap.remove(maxHeap.size());
|
||||
// Shall the new element be moved up...
|
||||
if (getElementKey(elementIndex) > getElementKey((int) Math.floor(elementIndex / 2))) toggleUp(elementIndex);
|
||||
if (getElementKey(elementIndex) > getElementKey((int) Math.floor(elementIndex / 2.0))) toggleUp(elementIndex);
|
||||
// ... or down ?
|
||||
else if (((2 * elementIndex <= maxHeap.size()) && (getElementKey(elementIndex) < getElementKey(elementIndex * 2))) ||
|
||||
((2 * elementIndex < maxHeap.size()) && (getElementKey(elementIndex) < getElementKey(elementIndex * 2))))
|
||||
|
@ -44,9 +44,9 @@ public class MinHeap implements Heap {
|
||||
// Toggle an element up to its right place as long as its key is lower than its parent's
|
||||
private void toggleUp(int elementIndex) {
|
||||
double key = minHeap.get(elementIndex - 1).getKey();
|
||||
while (getElementKey((int) Math.floor(elementIndex / 2)) > key) {
|
||||
swap(elementIndex, (int) Math.floor(elementIndex / 2));
|
||||
elementIndex = (int) Math.floor(elementIndex / 2);
|
||||
while (getElementKey((int) Math.floor(elementIndex / 2.0)) > key) {
|
||||
swap(elementIndex, (int) Math.floor(elementIndex / 2.0));
|
||||
elementIndex = (int) Math.floor(elementIndex / 2.0);
|
||||
}
|
||||
}
|
||||
|
||||
@ -96,7 +96,7 @@ public class MinHeap implements Heap {
|
||||
minHeap.set(elementIndex - 1, getElement(minHeap.size()));
|
||||
minHeap.remove(minHeap.size());
|
||||
// Shall the new element be moved up...
|
||||
if (getElementKey(elementIndex) < getElementKey((int) Math.floor(elementIndex / 2))) toggleUp(elementIndex);
|
||||
if (getElementKey(elementIndex) < getElementKey((int)Math.floor(elementIndex / 2.0))) toggleUp(elementIndex);
|
||||
// ... or down ?
|
||||
else if (((2 * elementIndex <= minHeap.size()) && (getElementKey(elementIndex) > getElementKey(elementIndex * 2))) ||
|
||||
((2 * elementIndex < minHeap.size()) && (getElementKey(elementIndex) > getElementKey(elementIndex * 2))))
|
||||
|
@ -14,7 +14,7 @@ public class CircleLinkedList<E> {
|
||||
//For better O.O design this should be private allows for better black box design
|
||||
private int size;
|
||||
//this will point to dummy node;
|
||||
private Node<E> head;
|
||||
private Node<E> head = null;
|
||||
|
||||
//constructer for class.. here we will make a dummy node for circly linked list implementation with reduced error catching as our list will never be empty;
|
||||
public CircleLinkedList() {
|
||||
|
@ -86,9 +86,12 @@ public class DoublyLinkedList {
|
||||
public Link deleteHead() {
|
||||
Link temp = head;
|
||||
head = head.next; // oldHead <--> 2ndElement(head)
|
||||
head.previous = null; // oldHead --> 2ndElement(head) nothing pointing at old head so will be removed
|
||||
if (head == null)
|
||||
|
||||
if (head == null) {
|
||||
tail = null;
|
||||
} else {
|
||||
head.previous = null; // oldHead --> 2ndElement(head) nothing pointing at old head so will be removed
|
||||
}
|
||||
return temp;
|
||||
}
|
||||
|
||||
@ -100,10 +103,13 @@ public class DoublyLinkedList {
|
||||
public Link deleteTail() {
|
||||
Link temp = tail;
|
||||
tail = tail.previous; // 2ndLast(tail) <--> oldTail --> null
|
||||
tail.next = null; // 2ndLast(tail) --> null
|
||||
|
||||
if (tail == null) {
|
||||
head = null;
|
||||
} else{
|
||||
tail.next = null; // 2ndLast(tail) --> null
|
||||
}
|
||||
|
||||
return temp;
|
||||
}
|
||||
|
||||
|
@ -74,7 +74,7 @@ public class NodeStack<Item> {
|
||||
} else {
|
||||
newNs.setPrevious(NodeStack.head);
|
||||
NodeStack.head.setNext(newNs);
|
||||
NodeStack.head = newNs;
|
||||
NodeStack.head.setHead(newNs);
|
||||
}
|
||||
|
||||
NodeStack.setSize(NodeStack.getSize() + 1);
|
||||
@ -89,7 +89,7 @@ public class NodeStack<Item> {
|
||||
|
||||
Item item = (Item) NodeStack.head.getData();
|
||||
|
||||
NodeStack.head = NodeStack.head.getPrevious();
|
||||
NodeStack.head.setHead(NodeStack.head.getPrevious());
|
||||
NodeStack.head.setNext(null);
|
||||
|
||||
NodeStack.setSize(NodeStack.getSize() - 1);
|
||||
|
@ -15,8 +15,8 @@ public class LevelOrderTraversal {
|
||||
// Root of the Binary Tree
|
||||
Node root;
|
||||
|
||||
public LevelOrderTraversal() {
|
||||
root = null;
|
||||
public LevelOrderTraversal( Node root) {
|
||||
this.root = root;
|
||||
}
|
||||
|
||||
/* function to print level order traversal of tree*/
|
||||
|
@ -19,11 +19,9 @@ public class LevelOrderTraversalQueue {
|
||||
}
|
||||
}
|
||||
|
||||
Node root;
|
||||
|
||||
/* Given a binary tree. Print its nodes in level order
|
||||
using array for implementing queue */
|
||||
void printLevelOrder() {
|
||||
void printLevelOrder(Node root) {
|
||||
Queue<Node> queue = new LinkedList<Node>();
|
||||
queue.add(root);
|
||||
while (!queue.isEmpty()) {
|
||||
|
@ -13,14 +13,13 @@ public class ValidBSTOrNot {
|
||||
}
|
||||
|
||||
//Root of the Binary Tree
|
||||
Node root;
|
||||
|
||||
/* can give min and max value according to your code or
|
||||
can write a function to find min and max value of tree. */
|
||||
|
||||
/* returns true if given search tree is binary
|
||||
search tree (efficient version) */
|
||||
boolean isBST() {
|
||||
boolean isBST(Node root) {
|
||||
return isBSTUtil(root, Integer.MIN_VALUE,
|
||||
Integer.MAX_VALUE);
|
||||
}
|
||||
|
@ -22,7 +22,7 @@ public class LongestIncreasingSubsequence {
|
||||
|
||||
private static int upperBound(int[] ar, int l, int r, int key) {
|
||||
while (l < r - 1) {
|
||||
int m = (l + r) / 2;
|
||||
int m = (l + r) >>> 1;
|
||||
if (ar[m] >= key)
|
||||
r = m;
|
||||
else
|
||||
|
@ -25,7 +25,7 @@ public class MatrixChainMultiplication {
|
||||
count++;
|
||||
}
|
||||
for (Matrix m : mArray) {
|
||||
System.out.format("A(%d) = %2d x %2d\n", m.count(), m.col(), m.row());
|
||||
System.out.format("A(%d) = %2d x %2d%n", m.count(), m.col(), m.row());
|
||||
}
|
||||
|
||||
size = mArray.size();
|
||||
|
@ -52,6 +52,6 @@ public class GCD {
|
||||
|
||||
// call gcd function (input array)
|
||||
System.out.println(gcd(myIntArray)); // => 4
|
||||
System.out.printf("gcd(40,24)=%d gcd(24,40)=%d\n", gcd(40, 24), gcd(24, 40)); // => 8
|
||||
System.out.printf("gcd(40,24)=%d gcd(24,40)=%d%n", gcd(40, 24), gcd(24, 40)); // => 8
|
||||
}
|
||||
}
|
||||
|
@ -1,192 +1,219 @@
|
||||
package Others;
|
||||
|
||||
|
||||
/**
|
||||
* Dijkstra's algorithm,is a graph search algorithm that solves the single-source
|
||||
* shortest path problem for a graph with nonnegative edge path costs, producing
|
||||
* a shortest path tree.
|
||||
* <p>
|
||||
* NOTE: The inputs to Dijkstra's algorithm are a directed and weighted graph consisting
|
||||
* of 2 or more nodes, generally represented by an adjacency matrix or list, and a start node.
|
||||
* <p>
|
||||
* Original source of code: https://rosettacode.org/wiki/Dijkstra%27s_algorithm#Java
|
||||
* Also most of the comments are from RosettaCode.
|
||||
*/
|
||||
|
||||
import java.util.*;
|
||||
|
||||
public class Dijkstra {
|
||||
private static final Graph.Edge[] GRAPH = {
|
||||
// Distance from node "a" to node "b" is 7.
|
||||
// In the current Graph there is no way to move the other way (e,g, from "b" to "a"),
|
||||
// a new edge would be needed for that
|
||||
new Graph.Edge("a", "b", 7),
|
||||
new Graph.Edge("a", "c", 9),
|
||||
new Graph.Edge("a", "f", 14),
|
||||
new Graph.Edge("b", "c", 10),
|
||||
new Graph.Edge("b", "d", 15),
|
||||
new Graph.Edge("c", "d", 11),
|
||||
new Graph.Edge("c", "f", 2),
|
||||
new Graph.Edge("d", "e", 6),
|
||||
new Graph.Edge("e", "f", 9),
|
||||
};
|
||||
private static final String START = "a";
|
||||
private static final String END = "e";
|
||||
|
||||
/**
|
||||
* main function
|
||||
* Will run the code with "GRAPH" that was defined above.
|
||||
*/
|
||||
public static void main(String[] args) {
|
||||
Graph g = new Graph(GRAPH);
|
||||
g.dijkstra(START);
|
||||
g.printPath(END);
|
||||
//g.printAllPaths();
|
||||
}
|
||||
}
|
||||
|
||||
class Graph {
|
||||
// mapping of vertex names to Vertex objects, built from a set of Edges
|
||||
private final Map<String, Vertex> graph;
|
||||
|
||||
/**
|
||||
* One edge of the graph (only used by Graph constructor)
|
||||
*/
|
||||
public static class Edge {
|
||||
public final String v1, v2;
|
||||
public final int dist;
|
||||
|
||||
public Edge(String v1, String v2, int dist) {
|
||||
this.v1 = v1;
|
||||
this.v2 = v2;
|
||||
this.dist = dist;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* One vertex of the graph, complete with mappings to neighbouring vertices
|
||||
*/
|
||||
public static class Vertex implements Comparable<Vertex> {
|
||||
public final String name;
|
||||
// MAX_VALUE assumed to be infinity
|
||||
public int dist = Integer.MAX_VALUE;
|
||||
public Vertex previous = null;
|
||||
public final Map<Vertex, Integer> neighbours = new HashMap<>();
|
||||
|
||||
public Vertex(String name) {
|
||||
this.name = name;
|
||||
}
|
||||
|
||||
private void printPath() {
|
||||
if (this == this.previous) {
|
||||
System.out.printf("%s", this.name);
|
||||
} else if (this.previous == null) {
|
||||
System.out.printf("%s(unreached)", this.name);
|
||||
} else {
|
||||
this.previous.printPath();
|
||||
System.out.printf(" -> %s(%d)", this.name, this.dist);
|
||||
}
|
||||
}
|
||||
|
||||
public int compareTo(Vertex other) {
|
||||
if (dist == other.dist)
|
||||
return name.compareTo(other.name);
|
||||
|
||||
return Integer.compare(dist, other.dist);
|
||||
}
|
||||
|
||||
@Override
|
||||
public String toString() {
|
||||
return "(" + name + ", " + dist + ")";
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Builds a graph from a set of edges
|
||||
*/
|
||||
public Graph(Edge[] edges) {
|
||||
graph = new HashMap<>(edges.length);
|
||||
|
||||
// one pass to find all vertices
|
||||
for (Edge e : edges) {
|
||||
if (!graph.containsKey(e.v1)) graph.put(e.v1, new Vertex(e.v1));
|
||||
if (!graph.containsKey(e.v2)) graph.put(e.v2, new Vertex(e.v2));
|
||||
}
|
||||
|
||||
// another pass to set neighbouring vertices
|
||||
for (Edge e : edges) {
|
||||
graph.get(e.v1).neighbours.put(graph.get(e.v2), e.dist);
|
||||
// graph.get(e.v2).neighbours.put(graph.get(e.v1), e.dist); // also do this for an undirected graph
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Runs dijkstra using a specified source vertex
|
||||
*/
|
||||
public void dijkstra(String startName) {
|
||||
if (!graph.containsKey(startName)) {
|
||||
System.err.printf("Graph doesn't contain start vertex \"%s\"\n", startName);
|
||||
return;
|
||||
}
|
||||
final Vertex source = graph.get(startName);
|
||||
NavigableSet<Vertex> q = new TreeSet<>();
|
||||
|
||||
// set-up vertices
|
||||
for (Vertex v : graph.values()) {
|
||||
v.previous = v == source ? source : null;
|
||||
v.dist = v == source ? 0 : Integer.MAX_VALUE;
|
||||
q.add(v);
|
||||
}
|
||||
|
||||
dijkstra(q);
|
||||
}
|
||||
|
||||
/**
|
||||
* Implementation of dijkstra's algorithm using a binary heap.
|
||||
*/
|
||||
private void dijkstra(final NavigableSet<Vertex> q) {
|
||||
Vertex u, v;
|
||||
while (!q.isEmpty()) {
|
||||
// vertex with shortest distance (first iteration will return source)
|
||||
u = q.pollFirst();
|
||||
if (u.dist == Integer.MAX_VALUE)
|
||||
break; // we can ignore u (and any other remaining vertices) since they are unreachable
|
||||
|
||||
// look at distances to each neighbour
|
||||
for (Map.Entry<Vertex, Integer> a : u.neighbours.entrySet()) {
|
||||
v = a.getKey(); // the neighbour in this iteration
|
||||
|
||||
final int alternateDist = u.dist + a.getValue();
|
||||
if (alternateDist < v.dist) { // shorter path to neighbour found
|
||||
q.remove(v);
|
||||
v.dist = alternateDist;
|
||||
v.previous = u;
|
||||
q.add(v);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Prints a path from the source to the specified vertex
|
||||
*/
|
||||
public void printPath(String endName) {
|
||||
if (!graph.containsKey(endName)) {
|
||||
System.err.printf("Graph doesn't contain end vertex \"%s\"\n", endName);
|
||||
return;
|
||||
}
|
||||
|
||||
graph.get(endName).printPath();
|
||||
System.out.println();
|
||||
}
|
||||
|
||||
/**
|
||||
* Prints the path from the source to every vertex (output order is not guaranteed)
|
||||
*/
|
||||
public void printAllPaths() {
|
||||
for (Vertex v : graph.values()) {
|
||||
v.printPath();
|
||||
System.out.println();
|
||||
}
|
||||
}
|
||||
package Others;
|
||||
|
||||
|
||||
/**
|
||||
* Dijkstra's algorithm,is a graph search algorithm that solves the single-source
|
||||
* shortest path problem for a graph with nonnegative edge path costs, producing
|
||||
* a shortest path tree.
|
||||
* <p>
|
||||
* NOTE: The inputs to Dijkstra's algorithm are a directed and weighted graph consisting
|
||||
* of 2 or more nodes, generally represented by an adjacency matrix or list, and a start node.
|
||||
* <p>
|
||||
* Original source of code: https://rosettacode.org/wiki/Dijkstra%27s_algorithm#Java
|
||||
* Also most of the comments are from RosettaCode.
|
||||
*/
|
||||
|
||||
import java.util.*;
|
||||
|
||||
public class Dijkstra {
|
||||
private static final Graph.Edge[] GRAPH = {
|
||||
// Distance from node "a" to node "b" is 7.
|
||||
// In the current Graph there is no way to move the other way (e,g, from "b" to "a"),
|
||||
// a new edge would be needed for that
|
||||
new Graph.Edge("a", "b", 7),
|
||||
new Graph.Edge("a", "c", 9),
|
||||
new Graph.Edge("a", "f", 14),
|
||||
new Graph.Edge("b", "c", 10),
|
||||
new Graph.Edge("b", "d", 15),
|
||||
new Graph.Edge("c", "d", 11),
|
||||
new Graph.Edge("c", "f", 2),
|
||||
new Graph.Edge("d", "e", 6),
|
||||
new Graph.Edge("e", "f", 9),
|
||||
};
|
||||
private static final String START = "a";
|
||||
private static final String END = "e";
|
||||
|
||||
/**
|
||||
* main function
|
||||
* Will run the code with "GRAPH" that was defined above.
|
||||
*/
|
||||
public static void main(String[] args) {
|
||||
Graph g = new Graph(GRAPH);
|
||||
g.dijkstra(START);
|
||||
g.printPath(END);
|
||||
//g.printAllPaths();
|
||||
}
|
||||
}
|
||||
|
||||
class Graph {
|
||||
// mapping of vertex names to Vertex objects, built from a set of Edges
|
||||
private final Map<String, Vertex> graph;
|
||||
|
||||
/**
|
||||
* One edge of the graph (only used by Graph constructor)
|
||||
*/
|
||||
public static class Edge {
|
||||
public final String v1, v2;
|
||||
public final int dist;
|
||||
|
||||
public Edge(String v1, String v2, int dist) {
|
||||
this.v1 = v1;
|
||||
this.v2 = v2;
|
||||
this.dist = dist;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* One vertex of the graph, complete with mappings to neighbouring vertices
|
||||
*/
|
||||
public static class Vertex implements Comparable<Vertex> {
|
||||
public final String name;
|
||||
// MAX_VALUE assumed to be infinity
|
||||
public int dist = Integer.MAX_VALUE;
|
||||
public Vertex previous = null;
|
||||
public final Map<Vertex, Integer> neighbours = new HashMap<>();
|
||||
|
||||
public Vertex(String name) {
|
||||
this.name = name;
|
||||
}
|
||||
|
||||
private void printPath() {
|
||||
if (this == this.previous) {
|
||||
System.out.printf("%s", this.name);
|
||||
} else if (this.previous == null) {
|
||||
System.out.printf("%s(unreached)", this.name);
|
||||
} else {
|
||||
this.previous.printPath();
|
||||
System.out.printf(" -> %s(%d)", this.name, this.dist);
|
||||
}
|
||||
}
|
||||
|
||||
public int compareTo(Vertex other) {
|
||||
if (dist == other.dist)
|
||||
return name.compareTo(other.name);
|
||||
|
||||
return Integer.compare(dist, other.dist);
|
||||
}
|
||||
|
||||
@Override
|
||||
public boolean equals(Object object) {
|
||||
if (this == object) return true;
|
||||
if (object == null || getClass() != object.getClass()) return false;
|
||||
if (!super.equals(object)) return false;
|
||||
|
||||
Vertex vertex = (Vertex) object;
|
||||
|
||||
if (dist != vertex.dist) return false;
|
||||
if (name != null ? !name.equals(vertex.name) : vertex.name != null) return false;
|
||||
if (previous != null ? !previous.equals(vertex.previous) : vertex.previous != null) return false;
|
||||
if (neighbours != null ? !neighbours.equals(vertex.neighbours) : vertex.neighbours != null) return false;
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
@Override
|
||||
public int hashCode() {
|
||||
int result = super.hashCode();
|
||||
result = 31 * result + (name != null ? name.hashCode() : 0);
|
||||
result = 31 * result + dist;
|
||||
result = 31 * result + (previous != null ? previous.hashCode() : 0);
|
||||
result = 31 * result + (neighbours != null ? neighbours.hashCode() : 0);
|
||||
return result;
|
||||
}
|
||||
|
||||
@Override
|
||||
public String toString() {
|
||||
return "(" + name + ", " + dist + ")";
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Builds a graph from a set of edges
|
||||
*/
|
||||
public Graph(Edge[] edges) {
|
||||
graph = new HashMap<>(edges.length);
|
||||
|
||||
// one pass to find all vertices
|
||||
for (Edge e : edges) {
|
||||
if (!graph.containsKey(e.v1)) graph.put(e.v1, new Vertex(e.v1));
|
||||
if (!graph.containsKey(e.v2)) graph.put(e.v2, new Vertex(e.v2));
|
||||
}
|
||||
|
||||
// another pass to set neighbouring vertices
|
||||
for (Edge e : edges) {
|
||||
graph.get(e.v1).neighbours.put(graph.get(e.v2), e.dist);
|
||||
// graph.get(e.v2).neighbours.put(graph.get(e.v1), e.dist); // also do this for an undirected graph
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Runs dijkstra using a specified source vertex
|
||||
*/
|
||||
public void dijkstra(String startName) {
|
||||
if (!graph.containsKey(startName)) {
|
||||
System.err.printf("Graph doesn't contain start vertex \"%s\"%n", startName);
|
||||
return;
|
||||
}
|
||||
final Vertex source = graph.get(startName);
|
||||
NavigableSet<Vertex> q = new TreeSet<>();
|
||||
|
||||
// set-up vertices
|
||||
for (Vertex v : graph.values()) {
|
||||
v.previous = v == source ? source : null;
|
||||
v.dist = v == source ? 0 : Integer.MAX_VALUE;
|
||||
q.add(v);
|
||||
}
|
||||
|
||||
dijkstra(q);
|
||||
}
|
||||
|
||||
/**
|
||||
* Implementation of dijkstra's algorithm using a binary heap.
|
||||
*/
|
||||
private void dijkstra(final NavigableSet<Vertex> q) {
|
||||
Vertex u, v;
|
||||
while (!q.isEmpty()) {
|
||||
// vertex with shortest distance (first iteration will return source)
|
||||
u = q.pollFirst();
|
||||
if (u.dist == Integer.MAX_VALUE)
|
||||
break; // we can ignore u (and any other remaining vertices) since they are unreachable
|
||||
|
||||
// look at distances to each neighbour
|
||||
for (Map.Entry<Vertex, Integer> a : u.neighbours.entrySet()) {
|
||||
v = a.getKey(); // the neighbour in this iteration
|
||||
|
||||
final int alternateDist = u.dist + a.getValue();
|
||||
if (alternateDist < v.dist) { // shorter path to neighbour found
|
||||
q.remove(v);
|
||||
v.dist = alternateDist;
|
||||
v.previous = u;
|
||||
q.add(v);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Prints a path from the source to the specified vertex
|
||||
*/
|
||||
public void printPath(String endName) {
|
||||
if (!graph.containsKey(endName)) {
|
||||
System.err.printf("Graph doesn't contain end vertex \"%s\"%n", endName);
|
||||
return;
|
||||
}
|
||||
|
||||
graph.get(endName).printPath();
|
||||
System.out.println();
|
||||
}
|
||||
|
||||
/**
|
||||
* Prints the path from the source to every vertex (output order is not guaranteed)
|
||||
*/
|
||||
public void printAllPaths() {
|
||||
for (Vertex v : graph.values()) {
|
||||
v.printPath();
|
||||
System.out.println();
|
||||
}
|
||||
}
|
||||
|
||||
}
|
@ -50,7 +50,8 @@ public class TopKWords {
|
||||
} finally {
|
||||
try {
|
||||
// you always have to close the I/O streams
|
||||
fis.close();
|
||||
if (fis != null)
|
||||
fis.close();
|
||||
} catch (IOException e) {
|
||||
e.printStackTrace();
|
||||
}
|
||||
|
@ -12,7 +12,7 @@ class TowerOfHanoi {
|
||||
|
||||
// Shift function is called in recursion for swapping the n-1 disc from the startPole to the intermediatePole
|
||||
shift(n - 1, startPole, endPole, intermediatePole);
|
||||
System.out.println("\nMove \"" + n + "\" from " + startPole + " --> " + endPole); // Result Printing
|
||||
System.out.println("%nMove \"" + n + "\" from " + startPole + " --> " + endPole); // Result Printing
|
||||
// Shift function is called in recursion for swapping the n-1 disc from the intermediatePole to the endPole
|
||||
shift(n - 1, intermediatePole, startPole, endPole);
|
||||
}
|
||||
|
@ -40,7 +40,7 @@ public final class IterativeBinarySearch implements SearchAlgorithm {
|
||||
r = array.length - 1;
|
||||
|
||||
while (l <= r) {
|
||||
k = (l + r) / 2;
|
||||
k = (l + r) >>> 1;
|
||||
cmp = key.compareTo(array[k]);
|
||||
|
||||
if (cmp == 0) {
|
||||
|
@ -64,7 +64,7 @@ class QuickSort implements SortAlgorithm {
|
||||
**/
|
||||
|
||||
private static <T extends Comparable<T>> int partition(T[] array, int left, int right) {
|
||||
int mid = (left + right) / 2;
|
||||
int mid = (left + right) >>> 1;
|
||||
T pivot = array[mid];
|
||||
|
||||
while (left <= right) {
|
||||
|
@ -125,6 +125,8 @@ public class Caesar {
|
||||
case 'D':
|
||||
case 'd':
|
||||
System.out.println("DECODED MESSAGE IS \n" + decode(message, shift));
|
||||
default:
|
||||
System.out.println("default case");
|
||||
}
|
||||
input.close();
|
||||
}
|
||||
|
@ -117,7 +117,7 @@ public class ColumnarTranspositionCipher {
|
||||
* order to respect the Columnar Transposition Cipher Rule.
|
||||
*/
|
||||
private static int numberOfRows(String word) {
|
||||
if ((double) word.length() / keyword.length() > word.length() / keyword.length()) {
|
||||
if (word.length() / keyword.length() > word.length() / keyword.length()) {
|
||||
return (word.length() / keyword.length()) + 1;
|
||||
} else {
|
||||
return word.length() / keyword.length();
|
||||
|
@ -31,6 +31,15 @@ public final class ClosestPair {
|
||||
* Minimum point length.
|
||||
*/
|
||||
private static double minNum = Double.MAX_VALUE;
|
||||
|
||||
public static void setMinNum(double minNum) {
|
||||
ClosestPair.minNum = minNum;
|
||||
}
|
||||
|
||||
public static void setSecondCount(int secondCount) {
|
||||
ClosestPair.secondCount = secondCount;
|
||||
}
|
||||
|
||||
/**
|
||||
* secondCount
|
||||
*/
|
||||
@ -213,7 +222,7 @@ public final class ClosestPair {
|
||||
for (int i = 0; i < totalNum; i++) {
|
||||
double xGap = Math.abs(divideArray[divideX].x - divideArray[i].x);
|
||||
if (xGap < minValue) {
|
||||
secondCount++; // size of the array
|
||||
ClosestPair.setSecondCount(secondCount + 1); // size of the array
|
||||
} else {
|
||||
if (divideArray[i].x > divideArray[divideX].x) {
|
||||
break;
|
||||
@ -250,7 +259,7 @@ public final class ClosestPair {
|
||||
minValue = length;
|
||||
// Conditional for registering final coordinate
|
||||
if (length < minNum) {
|
||||
minNum = length;
|
||||
ClosestPair.setMinNum(length);
|
||||
point1 = firstWindow[i];
|
||||
point2 = firstWindow[j];
|
||||
}
|
||||
@ -260,7 +269,7 @@ public final class ClosestPair {
|
||||
}
|
||||
}
|
||||
}
|
||||
secondCount = 0;
|
||||
ClosestPair.setSecondCount(0);
|
||||
return minValue;
|
||||
}
|
||||
|
||||
@ -288,7 +297,7 @@ public final class ClosestPair {
|
||||
length = Math.sqrt(Math.pow(xGap, 2) + Math.pow(yGap, 2));
|
||||
// Conditional statement for registering final coordinate
|
||||
if (length < minNum) {
|
||||
minNum = length;
|
||||
ClosestPair.setMinNum(length);
|
||||
|
||||
}
|
||||
point1 = arrayParam[0];
|
||||
@ -311,7 +320,7 @@ public final class ClosestPair {
|
||||
minValue = length;
|
||||
if (length < minNum) {
|
||||
// Registering final coordinate
|
||||
minNum = length;
|
||||
ClosestPair.setMinNum(length);
|
||||
point1 = arrayParam[i];
|
||||
point2 = arrayParam[j];
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user