Prim's And kruskal's Algorithms
This commit is contained in:
parent
01e25558a8
commit
ab9f2b05f4
174
data_structures/Graphs/Kruskal's Algorithm.java
Normal file
174
data_structures/Graphs/Kruskal's Algorithm.java
Normal file
@ -0,0 +1,174 @@
|
||||
// Java program for Kruskal's algorithm to find Minimum Spanning Tree
|
||||
// of a given connected, undirected and weighted graph
|
||||
import java.util.*;
|
||||
import java.lang.*;
|
||||
import java.io.*;
|
||||
|
||||
class Graph
|
||||
{
|
||||
// A class to represent a graph edge
|
||||
class Edge implements Comparable<Edge>
|
||||
{
|
||||
int src, dest, weight;
|
||||
|
||||
// Comparator function used for sorting edges based on
|
||||
// their weight
|
||||
public int compareTo(Edge compareEdge)
|
||||
{
|
||||
return this.weight-compareEdge.weight;
|
||||
}
|
||||
};
|
||||
|
||||
// A class to represent a subset for union-find
|
||||
class subset
|
||||
{
|
||||
int parent, rank;
|
||||
};
|
||||
|
||||
int V, E; // V-> no. of vertices & E->no.of edges
|
||||
Edge edge[]; // collection of all edges
|
||||
|
||||
// Creates a graph with V vertices and E edges
|
||||
Graph(int v, int e)
|
||||
{
|
||||
V = v;
|
||||
E = e;
|
||||
edge = new Edge[E];
|
||||
for (int i=0; i<e; ++i)
|
||||
edge[i] = new Edge();
|
||||
}
|
||||
|
||||
// A utility function to find set of an element i
|
||||
// (uses path compression technique)
|
||||
int find(subset subsets[], int i)
|
||||
{
|
||||
// find root and make root as parent of i (path compression)
|
||||
if (subsets[i].parent != i)
|
||||
subsets[i].parent = find(subsets, subsets[i].parent);
|
||||
|
||||
return subsets[i].parent;
|
||||
}
|
||||
|
||||
// A function that does union of two sets of x and y
|
||||
// (uses union by rank)
|
||||
void Union(subset subsets[], int x, int y)
|
||||
{
|
||||
int xroot = find(subsets, x);
|
||||
int yroot = find(subsets, y);
|
||||
|
||||
// Attach smaller rank tree under root of high rank tree
|
||||
// (Union by Rank)
|
||||
if (subsets[xroot].rank < subsets[yroot].rank)
|
||||
subsets[xroot].parent = yroot;
|
||||
else if (subsets[xroot].rank > subsets[yroot].rank)
|
||||
subsets[yroot].parent = xroot;
|
||||
|
||||
// If ranks are same, then make one as root and increment
|
||||
// its rank by one
|
||||
else
|
||||
{
|
||||
subsets[yroot].parent = xroot;
|
||||
subsets[xroot].rank++;
|
||||
}
|
||||
}
|
||||
|
||||
// The main function to construct MST using Kruskal's algorithm
|
||||
void KruskalMST()
|
||||
{
|
||||
Edge result[] = new Edge[V]; // Tnis will store the resultant MST
|
||||
int e = 0; // An index variable, used for result[]
|
||||
int i = 0; // An index variable, used for sorted edges
|
||||
for (i=0; i<V; ++i)
|
||||
result[i] = new Edge();
|
||||
|
||||
// Step 1: Sort all the edges in non-decreasing order of their
|
||||
// weight. If we are not allowed to change the given graph, we
|
||||
// can create a copy of array of edges
|
||||
Arrays.sort(edge);
|
||||
|
||||
// Allocate memory for creating V ssubsets
|
||||
subset subsets[] = new subset[V];
|
||||
for(i=0; i<V; ++i)
|
||||
subsets[i]=new subset();
|
||||
|
||||
// Create V subsets with single elements
|
||||
for (int v = 0; v < V; ++v)
|
||||
{
|
||||
subsets[v].parent = v;
|
||||
subsets[v].rank = 0;
|
||||
}
|
||||
|
||||
i = 0; // Index used to pick next edge
|
||||
|
||||
// Number of edges to be taken is equal to V-1
|
||||
while (e < V - 1)
|
||||
{
|
||||
// Step 2: Pick the smallest edge. And increment the index
|
||||
// for next iteration
|
||||
Edge next_edge = new Edge();
|
||||
next_edge = edge[i++];
|
||||
|
||||
int x = find(subsets, next_edge.src);
|
||||
int y = find(subsets, next_edge.dest);
|
||||
|
||||
// If including this edge does't cause cycle, include it
|
||||
// in result and increment the index of result for next edge
|
||||
if (x != y)
|
||||
{
|
||||
result[e++] = next_edge;
|
||||
Union(subsets, x, y);
|
||||
}
|
||||
// Else discard the next_edge
|
||||
}
|
||||
|
||||
// print the contents of result[] to display the built MST
|
||||
System.out.println("Following are the edges in the constructed MST");
|
||||
for (i = 0; i < e; ++i)
|
||||
System.out.println(result[i].src+" -- "+result[i].dest+" == "+
|
||||
result[i].weight);
|
||||
}
|
||||
|
||||
// Driver Program
|
||||
public static void main (String[] args)
|
||||
{
|
||||
|
||||
/* Let us create following weighted graph
|
||||
10
|
||||
0--------1
|
||||
| \ |
|
||||
6| 5\ |15
|
||||
| \ |
|
||||
2--------3
|
||||
4 */
|
||||
int V = 4; // Number of vertices in graph
|
||||
int E = 5; // Number of edges in graph
|
||||
Graph graph = new Graph(V, E);
|
||||
|
||||
// add edge 0-1
|
||||
graph.edge[0].src = 0;
|
||||
graph.edge[0].dest = 1;
|
||||
graph.edge[0].weight = 10;
|
||||
|
||||
// add edge 0-2
|
||||
graph.edge[1].src = 0;
|
||||
graph.edge[1].dest = 2;
|
||||
graph.edge[1].weight = 6;
|
||||
|
||||
// add edge 0-3
|
||||
graph.edge[2].src = 0;
|
||||
graph.edge[2].dest = 3;
|
||||
graph.edge[2].weight = 5;
|
||||
|
||||
// add edge 1-3
|
||||
graph.edge[3].src = 1;
|
||||
graph.edge[3].dest = 3;
|
||||
graph.edge[3].weight = 15;
|
||||
|
||||
// add edge 2-3
|
||||
graph.edge[4].src = 2;
|
||||
graph.edge[4].dest = 3;
|
||||
graph.edge[4].weight = 4;
|
||||
|
||||
graph.KruskalMST();
|
||||
}
|
||||
}
|
116
data_structures/Graphs/prim.java
Normal file
116
data_structures/Graphs/prim.java
Normal file
@ -0,0 +1,116 @@
|
||||
// A Java program for Prim's Minimum Spanning Tree (MST) algorithm.
|
||||
//adjacency matrix representation of the graph
|
||||
|
||||
import java.util.*;
|
||||
import java.lang.*;
|
||||
import java.io.*;
|
||||
|
||||
class MST
|
||||
{
|
||||
// Number of vertices in the graph
|
||||
private static final int V=5;
|
||||
|
||||
// A utility function to find the vertex with minimum key
|
||||
// value, from the set of vertices not yet included in MST
|
||||
int minKey(int key[], Boolean mstSet[])
|
||||
{
|
||||
// Initialize min value
|
||||
int min = Integer.MAX_VALUE, min_index=-1;
|
||||
|
||||
for (int v = 0; v < V; v++)
|
||||
if (mstSet[v] == false && key[v] < min)
|
||||
{
|
||||
min = key[v];
|
||||
min_index = v;
|
||||
}
|
||||
|
||||
return min_index;
|
||||
}
|
||||
|
||||
// A utility function to print the constructed MST stored in
|
||||
// parent[]
|
||||
void printMST(int parent[], int n, int graph[][])
|
||||
{
|
||||
System.out.println("Edge Weight");
|
||||
for (int i = 1; i < V; i++)
|
||||
System.out.println(parent[i]+" - "+ i+" "+
|
||||
graph[i][parent[i]]);
|
||||
}
|
||||
|
||||
// Function to construct and print MST for a graph represented
|
||||
// using adjacency matrix representation
|
||||
void primMST(int graph[][])
|
||||
{
|
||||
// Array to store constructed MST
|
||||
int parent[] = new int[V];
|
||||
|
||||
// Key values used to pick minimum weight edge in cut
|
||||
int key[] = new int [V];
|
||||
|
||||
// To represent set of vertices not yet included in MST
|
||||
Boolean mstSet[] = new Boolean[V];
|
||||
|
||||
// Initialize all keys as INFINITE
|
||||
for (int i = 0; i < V; i++)
|
||||
{
|
||||
key[i] = Integer.MAX_VALUE;
|
||||
mstSet[i] = false;
|
||||
}
|
||||
|
||||
// Always include first 1st vertex in MST.
|
||||
key[0] = 0; // Make key 0 so that this vertex is
|
||||
// picked as first vertex
|
||||
parent[0] = -1; // First node is always root of MST
|
||||
|
||||
// The MST will have V vertices
|
||||
for (int count = 0; count < V-1; count++)
|
||||
{
|
||||
// Pick thd minimum key vertex from the set of vertices
|
||||
// not yet included in MST
|
||||
int u = minKey(key, mstSet);
|
||||
|
||||
// Add the picked vertex to the MST Set
|
||||
mstSet[u] = true;
|
||||
|
||||
// Update key value and parent index of the adjacent
|
||||
// vertices of the picked vertex. Consider only those
|
||||
// vertices which are not yet included in MST
|
||||
for (int v = 0; v < V; v++)
|
||||
|
||||
// graph[u][v] is non zero only for adjacent vertices of m
|
||||
// mstSet[v] is false for vertices not yet included in MST
|
||||
// Update the key only if graph[u][v] is smaller than key[v]
|
||||
if (graph[u][v]!=0 && mstSet[v] == false &&
|
||||
graph[u][v] < key[v])
|
||||
{
|
||||
parent[v] = u;
|
||||
key[v] = graph[u][v];
|
||||
}
|
||||
}
|
||||
|
||||
// print the constructed MST
|
||||
printMST(parent, V, graph);
|
||||
}
|
||||
|
||||
public static void main (String[] args)
|
||||
{
|
||||
/* Let us create the following graph
|
||||
2 3
|
||||
(0)--(1)--(2)
|
||||
| / \ |
|
||||
6| 8/ \5 |7
|
||||
| / \ |
|
||||
(3)-------(4)
|
||||
9 */
|
||||
MST t = new MST();
|
||||
int graph[][] = new int[][] {{0, 2, 0, 6, 0},
|
||||
{2, 0, 3, 8, 5},
|
||||
{0, 3, 0, 0, 7},
|
||||
{6, 8, 0, 0, 9},
|
||||
{0, 5, 7, 9, 0},
|
||||
};
|
||||
|
||||
// Print the solution
|
||||
t.primMST(graph);
|
||||
}
|
||||
}
|
Loading…
Reference in New Issue
Block a user